Optimization and Statistical Estimation

support for decision-making in a stochastic environment

Optimization:
minimize a “cost” expression under constraints on the decision
the constraints could involve bounds on other “costs”
the “costs” may have a background in statistical analysis

Statistical Estimation:
approximate some quantity from empirical/historical data
minimize an error expression to get regression coefficients
different interpretations of “error” yield different results

Interplay:
- optimization problems involving uncertainty depend on
 estimation methodology even in coming to a formulation
- estimation problems are optimization of a special sort
- new and deeper connections are now coming to light
The Risk Quadrangle — A New Paradigm

an array of “quantifications” be applied to random variables \(X \)
“cost” orientation of \(X \): high outcomes bad, low outcomes good

\[
\begin{align*}
\text{risk} & \quad \mathcal{R} \quad \leftrightarrow \quad \mathcal{D} \quad \text{deviation} \\
\text{optimization} & \quad \uparrow \downarrow \quad \mathcal{S} \quad \downarrow \uparrow \quad \text{statistics} \\
\text{regret} & \quad \mathcal{V} \quad \leftrightarrow \quad \mathcal{E} \quad \text{error}
\end{align*}
\]

\(\mathcal{R}(X) \) elicits the “level of cost” in \(X \) to use in making comparisons
\(\mathcal{V}(X) \) quantifies the “anti-utility” in outcomes \(X > 0 \) versus \(X \leq 0 \)
\(\mathcal{D}(X) \) measures the “nonconstancy” in \(X \) as its uncertainty
\(\mathcal{E}(X) \) measures the “nonzeroness” in \(X \) for use in estimates
\(\mathcal{S}(X) \) is a “statistic” associated with \(X \) through \(\mathcal{E} \) and through \(\mathcal{V} \)
R.T. Rockafellar and S.P. Uryasev (2013),
“The fundamental risk quadrangle in risk management, optimization and statistical estimation,”

downloads: www.math.washington.edu/~rtr/mypage.html
(look for item #218)
“Costs”: quantities to be minimized or kept below given levels (this fits better with optimization conventions than “profits”)

General “cost” expression in decision-making:
\[c(x, v) \text{ with } x = \text{decision vector}, \ v = \text{data vector} \]
\[x = (x_1, \ldots, x_n), \quad v = (v_1, \ldots, v_m) \]

Stochastic uncertainty:
\[v \text{ is replaced by a random variable vector } V = (V_1, \ldots, V_m) \]
then “cost” becomes a random variable:
\[c(x) = c(x, V) \]

Portfolio example in finance:
\[V_j = \text{random return on asset } j, \ x_j = \text{amount of } j \text{ in portfolio} \]
\[c(x) = c(x, V) = -[x_1 V_1 + \cdots + x_n V_n] \text{ (random loss incurred)} \]

Design examples in engineering: “cost” \leftrightarrow “hazard”
Challenges in Optimization Modeling

“cost” \(c(x) \) = random variable depending on decision \(x \)
outcomes \(< 0 \), if any, correspond to “rewards”

Key issue in problem formulation

- the distribution of \(c(x) \) can only be shaped by the choice of \(x \)
- but how then can constraints and minimization be understood?
A Broad Pattern for Handling Risk in Optimization

Risk measures: functionals \mathcal{R} that “quantify the risk” in a random variable X by a numerical value $\mathcal{R}(X)$ (“risk” \neq “uncertainty”)

Systematic prescription

Faced with an uncertain “cost” $c(x) = c(x, V)$ articulate it numerically as $\bar{c}(x) = \mathcal{R}(c(x))$ for a choice of risk measure \mathcal{R}

Constraints: keeping $c(x)$ “acceptably” $\leq b$
 modeled as: constraint $\bar{c}(x) = \mathcal{R}(c(x)) \leq b$

Objectives: making $c(x)$ as “acceptably” low as possible
 modeled as: minimizing $\bar{c}(x) = \mathcal{R}(c(x))$
 i.e., minimizing the threshold level b such that x can be selected with $c(x)$ “acceptably” $\leq b$
Stochastic Framework

Space of future states: \(\Omega \) with elements \(\omega \) ("scenarios")
\[A_0 = \text{field of subsets of } \Omega, \quad P_0 = \text{probability measure on } A_0 \]

Random variables: functions \(X : \Omega \to \mathbb{R} \) (\(A_0 \)-measurable)
\[EX = \mu(X) = \int_{\Omega} X(\omega) dP_0(\omega), \quad \sigma^2(X) = E[(X - EX)^2] \]

Function space setting: \(X \in L^2 := L^2(\Omega, A_0, P_0) \) for simplicity
Hilbert space of random variables with finite mean and variance
\[\langle X, Y \rangle = E[XY], \quad \|X\| = \sqrt{E[X^2]} \]

Treatment of probability alternatives

Measures \(P \) can be represented by densities \(\frac{dP}{dP_0} \) with respect to \(P_0 \)
\[E_P(X) = \int_{\Omega} X(\omega) \frac{dP}{dP_0}(\omega) dP_0(\omega) = \langle X, Q \rangle \quad \text{for } Q = \frac{dP}{dP_0} \]
[sets \(P \) of alternatives \(P \) \(\longleftrightarrow \) [sets \(Q \) of \(Q \in L^2: Q \geq 0, EQ = 1 \)]
Axiomatization of Risk

Axioms for regular measures of risk: \(\mathcal{R} : \mathcal{L}^2 \to (-\infty, \infty] \)

- (R1) \(\mathcal{R}(C) = C \) for all constants \(C \)
- (R2) convexity, (R3) closedness (lower semicontinuity)
- (R4) aversity: \(\mathcal{R}(X) > EX \) for nonconstant \(X \)

Additional properties of major interest:

- (R5) positive homogeneity: \(\mathcal{R}(\lambda X) = \lambda \mathcal{R}(X) \) when \(\lambda > 0 \)
- (R6) monotonicity: \(\mathcal{R}(X) \leq \mathcal{R}(X') \) when \(X \leq X' \)

Coherent measures of risk: \(\mathcal{R} \) satisfying (R1), (R2), (R5), (R6)

Artzner et al. (2000) introduced coherency without aversity

Note: (R1)+(R2) \(\implies \mathcal{R}(X + C) = \mathcal{R}(X) + C \) for constants \(C \)

Preservation of convexity under (R1)+(R2)+(R6)

\(c(x) = c(x, V) \) convex in \(x \) \(\implies \bar{c}(x) = \mathcal{R}(c(x)) \) convex in \(x \)
Some Common Approaches From This Perspective

Best guess of future state: \(R(X) = X(\bar{\omega}) \) (\(\text{prob}(\bar{\omega}) > 0 \))

\[
\begin{align*}
\text{then } \ R(X) \leq b & \iff X(\bar{\omega}) \leq b \\
\rightarrow \text{coherent but not averse (and lacking any ability to hedge)}
\end{align*}
\]

Focusing on worst cases: \(R(X) = \sup X \) (ess. sup)

\[
\begin{align*}
\text{then } \ R(X) \leq b & \iff X \leq b \text{ almost surely} \\
\rightarrow \text{coherent, averse (but perhaps overly conservative, infeasible)}
\end{align*}
\]

Passing to expectations: \(R(X) = \mu(X) = \mathbb{E}X \)

\[
\begin{align*}
\text{then } \ R(X) \leq b & \iff X \leq b \text{ “on average”} \\
\rightarrow \text{coherent but not averse (perhaps too feeble)}
\end{align*}
\]

Adopting a safety margin: \(R(X) = \mu(X) + \lambda \sigma(X) \) \(\lambda > 0 \)

\[
\begin{align*}
\text{then } \ R(X) \leq b & \text{ unless in tail } > \lambda \text{ standard deviations} \\
\rightarrow \text{averse but not coherent (lacks monotonicity!)}
\end{align*}
\]
Quantiles and “Superquantiles”: VaR and CVaR

\[F_X = \text{cumulative distribution function for random variable } X \]

p-Quantile: “value-at-risk” in finance

\[q_p(X) = \text{VaR}_p(X) = “F_X^{-1}(p)” \]

p-Superquantile: “conditional value-at-risk” in finance

\[Q_p(X) = \text{CVaR}_p(X) = “E\[X | X \geq q_p(X)\]” = \frac{1}{1-p} \int_p^1 q_t(X)dt \]

mathematical behavior: quantiles bad, superquantiles good
Measures of Risk Based on Probability Thresholds

Looking at quantiles/VaR: \(R(X) = q_p(X) \)
then \(R(X) \leq b \iff \text{prob}\{X \leq b\} \geq p \)
\(\rightarrow \) not coherent, not averse (troublesome, subject to criticism)

Superquantiles/CVaR instead: \(R(X) = Q_p(X) \)
then \(R(X) \leq b \iff c(x) \leq b \) on average in upper \(p \)-tail
\(\rightarrow \) coherent, averse (easy to work with and more conservative!)

Corresponding concepts of “failure”
\(c(x) = c(x, V) \) captures “hazard,” failure \(\iff \) outcomes \(> 0 \)
\(q_p(c(x)) \leq 0 \) means **ordinary** probability of failure is \(\leq 1 - p \)
\(Q_p(c(x)) \leq 0 \) means **buffered** probability of failure is \(\leq 1 - p \)

Example: case of \(p = 0.9 \), focusing on the worst 10% of events
\(\rightarrow \) buffered probability of failure \(\leq 0.1 \) means: even in that
tail range, the hazard variable comes out “safe on average”
Minimization Formula for VaR and CVaR

\[
\text{CVaR}_p(X) = \min_{C \in \mathbb{R}} \left\{ C + \frac{1}{1-p} E[\max\{0, X - C\}] \right\} \quad \text{for } p \in (0, 1)
\]

\[
\text{VaR}_p(X) = \arg\min \quad \text{(if unique, otherwise the lowest)}
\]

Application to CVaR models:

convert a problem in \(x \) like

\[
\text{minimize } \text{CVaR}_{p_0}(c_0(x)) \quad \text{subject to} \quad [\text{basic constraints and}]
\]

\[
\text{CVaR}_{p_i}(c_i(x)) \leq b_i \quad \text{for } i = 1, \ldots, m
\]

into a problem in \(x \) and auxiliary variables \(C_0, C_1, \ldots, C_m \),

\[
\text{minimize } C_0 + \frac{1}{1-p_0} E[\max\{0, c_0(x) - C_0\}] \quad \text{while requiring}
\]

\[
C_i + \frac{1}{1-p_i} E[\max\{0, c_i(x) - C_i\}] \leq b_i, \quad i = 1, \ldots, m
\]

Important case: this converts to linear programming when

(1) each \(c_i(x) = c_i(x, V) \) depends linearly on \(x \),

(2) the future state space \(\Omega \) is modeled as finite.
Some CVaR/Superquantile References

downloads: www.math.washington.edu/~rtr/mypage.html
look for items #179, #187, #211
Stochastic Ambiguity, Admitting Alternative Probabilities

Probability density functions: \(Q \in \mathcal{L}^2 \) with \(Q \geq 0, \) \(EQ = 1 \)

\[\implies Q = \frac{dP}{dP_0} \] for some probability measure \(P \)

\[E_P(X) = \langle X, Q \rangle = E[XQ] = \int_\Omega X(\omega) \frac{dP}{dP_0}(\omega) dP_0(\omega) \]

the underlying probability measure \(P_0 \) corresponds to \(Q \equiv 1 \)

Stochastic ambiguity: not trusting just \(P_0 \), looking at other \(P \)
interested in \(\sup_{P \in \mathcal{P}} E_P(X) \) instead of just \(EX = E_{P_0}(X) \)

Risk envelopes: sets \(Q \subset \mathcal{L}^2 \) consisting of probability densities \(Q \)
interested in \(\mathcal{R}(X) = \sup_{Q \in Q} E[XQ] \) as a measure of risk

note: \(\mathcal{R} \) is unaffected if \(Q \) replaced by its closed convex hull

Regularity of a risk envelope:
\(Q \) is closed convex \(\neq \emptyset \) and \(1 \in Q \), but \(1 \) isn’t a “support point”
(i.e., \(\not\exists \) hyperplane touching \(Q \) at \(Q \equiv 1 \) without \(\supset Q \))
Dualization of Monotonic Measures of Risk

Risk envelope characterization, positively homogeneous case

\[\mathcal{R}(X) = \sup_{Q \in \mathcal{Q}} E[XQ], \quad \mathcal{Q} = \{ Q \mid E[XQ] \leq \mathcal{R}(X), \forall X \} \]

furnishes a one-to-one correspondence between

(a) regular risk measures \(\mathcal{R} \) that are monotonic + pos. homog.
(b) regular risk envelopes \(Q \), as above

Risk envelope characterization, general case

\[\mathcal{R}(X) = \sup_{Q \in \mathcal{Q}} \{ E[XQ] - \mathcal{J}(Q) \}, \]
\[\mathcal{J}(Q) = \sup_{X \in L^2} \{ E[XQ] - \mathcal{R}(Q) \}, \quad Q = \text{cl}(\text{dom } \mathcal{J}) \]

furnishes a one-to-one correspondence between

(a) regular risk measures \(\mathcal{R} \) that are monotonic
(b) regular risk envelopes \(Q \) as \(\text{cl}(\text{dom } \mathcal{J}) \) for a closed convex functional \(\mathcal{J} : L^2 \to [0, \infty] \) such that \(\mathcal{J}(1) = 0 = \min \mathcal{J} \)

\(\mathcal{J}(Q) \) assesses the “divergence” of \(Q = \frac{dP}{dP_0} \) from \(1 = \frac{dP_0}{dP_0} \)
Some Examples of Risk Dualization

Risk measures with positive homogeneity:

- for $\mathcal{R}(X) = Q_p(X) = \text{CVaR}_p(X)$ the risk envelope is:

 $Q = \{ Q \mid Q \geq 0, \, EQ = 1, \, Q \leq \frac{1}{1-p} \}$

- for $\mathcal{R}(X) = \sup X$ the risk envelope is:

 $Q = \{ Q \mid Q \geq 0, \, EQ = 1 \}$ (the full “probability simplex”)

Risk measures without positive homogeneity:

$\mathcal{R}(X) = \log E[\exp X]$ is a regular measure of risk that is also monotonic but not positively homogeneous. Its risk envelope is $Q = \text{probability simplex}$ supplied with $\mathcal{J}(Q) = -E[Q \log Q]$

Note: for $Q = dP/P_0$, the Bolzano-Shannon entropy expression

$$-E[Q \log Q] = -\int_{\Omega} \left[\frac{dP}{dP_0}(\omega) \log \frac{dP}{dP_0}(\omega) \right] dP_0(\omega)$$

is known as the Kullback-Leibler divergence of P from P_0.
“Robust” Optimization Revisited and Refined

Motivation behind so-called “robust” optimization:
- probabilities are often hard to assess, even as guesswork
- they can be avoided by focusing on $\mathcal{R}(X) = \sup_{\omega \in \Omega} X(\omega)$

Practical compromise/pitfall: this depends on the model for Ω
- which “scenarios” ω should go into Ω as the uncertainty set?
- subjective probability enters in deciding which ones to exclude

Nested robustness

Let Ω be **partitioned** into $\Omega_1, \ldots, \Omega_N$ with $p_k = \text{prob}[\Omega_k]$, and let

$$\mathcal{R}(X) = \sum_{k=1}^{N} p_k \sup_{\omega \in \Omega_k} X(\omega).$$

Then \mathcal{R} is regular, monotonic, pos. homogeneous, with envelope

$$Q = \{ Q \mid Q \geq 0, \text{prob}_Q[\Omega_k] = p_k, \forall k \}.$$

Alternative interpretation:
- the partition generates an information field \mathcal{A}
- $Q \leftrightarrow$ all prob. measures P consistent with that information
Recalling the Risk Quadrangle for the Next Development

\[
\begin{align*}
\text{risk } & \mathcal{R} \leftrightarrow \mathcal{D} \quad \text{deviation} \\
\text{optimization} & \uparrow \downarrow \quad \mathcal{S} \quad \downarrow \uparrow \\
\text{regret } & \mathcal{V} \leftrightarrow \mathcal{E} \quad \text{error}
\end{align*}
\]

\(\mathcal{R}(X)\) elicits the “level of cost” in \(X\) to use in making comparisons
\(\mathcal{V}(X)\) quantifies the “anti-utility” in outcomes \(X > 0\) versus \(X \leq 0\)
\(\mathcal{D}(X)\) measures the “nonconstancy” in \(X\) as its uncertainty
\(\mathcal{E}(X)\) measures the “nonzeroness” in \(X\) for use in estimates
\(\mathcal{S}(X)\) is a “statistic” associated with \(X\) through \(\mathcal{E}\) and through \(\mathcal{V}\)
Regret Versus Utility

Regret: the “compensation” $\mathcal{V}(X)$ for facing a future cost/loss X in contrast to the “utility” $\mathcal{U}(Y)$ perceived in a future gain Y

$$\mathcal{V}(X) = -\mathcal{U}(-X) \iff \mathcal{U}(Y) = -\mathcal{V}(-Y)$$

Axioms for regular measures of regret: $\mathcal{V} : L^2 \rightarrow (-\infty, \infty)$

- (V1) $\mathcal{V}(0) = 0$, (V2) convexity, (V3) closedness
- (V4) aversity: $\mathcal{V}(X) > EX$ for nonconstant X

Additional properties of major interest:

- (V5) positive homogeneity: $\mathcal{V}(\lambda X) = \lambda \mathcal{V}(X)$ when $\lambda > 0$
- (V6) monotonicity: $\mathcal{V}(X) \leq \mathcal{V}(X')$ when $X \leq X'$

\implies axioms for **regular measures of utility** $\mathcal{U} : L^2 \rightarrow [-\infty, \infty)$

(more explanation of utility connections will come later)
regret is oriented to minimizing, utility is oriented to maximizing
Risk From Regret

Goal: generalize to other risk measures the superquantile formula

\[Q_p(X) = \min_{C \in \mathbb{R}} \left\{ C + \frac{1}{1-p} E[\max\{0, X - C\}] \right\}, \quad q_p(X) = \arg\min \]

Trade-off Theorem

For any regular measure of regret \(\mathcal{V} \), the formula

\[\mathcal{R}(X) = \min_{C \in \mathbb{R}} \left\{ C + \mathcal{V}(X - C) \right\} \]

defines a regular measure of risk \(\mathcal{R} \) such that

- \(\mathcal{V} \) monotonic \(\implies \mathcal{R} \) monotonic
- \(\mathcal{V} \) pos. homog. \(\implies \mathcal{R} \) pos. homog.

Trade-off interpretation:

- \(C = \) “designated loss” (to be written off here and now)
- \(X - C = \) “residual loss” (still to be faced in the future)

Application to insurance: the argmin leads to the “premium”

Optimization role: simplifying \(\mathcal{R} \) to \(\mathcal{V} \) in objective/constraints
More About Utility

Finance question: for random variables Y representing monetary gains, how to think of one as being preferable to another?

Traditional approach through expected utility

- there is a utility function u to apply to money amounts y
- the functional $\mathcal{U} : Y \rightarrow \mathcal{U}(Y) = E[u(Y)]$ is then the key:

$$Y_1 \text{ is preferred (strictly) to } Y_2 \iff \mathcal{U}(Y_1) > \mathcal{U}(Y_2)$$

Background: von Neumann/Morgenstern theory for “lotteries”

- the utility function u is **concave and nondecreasing**, and can be **normalized** to have $u(0) = 0$ and $u(y) \leq y$

$$\implies \text{a benchmark focus with utility scaled to money, in which } \mathcal{U} \text{ is concave, nondecreasing, with } \mathcal{U}(0) = 0 \text{ and } \mathcal{U}(Y) \leq E[Y]$$

Regular measures of utility: such $\mathcal{U}(Y)$ more generally
Utility and Regret in the Monotonic Expectational Case

Expected utility: \(U(Y) = E[u(Y)] \) (normalized \(u \))
\(u(y) \) concave, nondecreasing with \(u(0) = 0, u(y) \leq y \)

Expected regret: \(V(X) = E[v(X)] \)
\(v(x) \) convex, nondecreasing with \(v(0) = 0, v(x) \geq x \)

\[v(x) = -u(-x) \quad \leftrightarrow \quad u(y) = -v(-y) \]

Superquantile formula example: \(V(X) = \frac{1}{1-p} E[\max\{0, X\}] \)
\[v(x) = \frac{1}{1-p} \max\{0, x\}, \quad u(y) = \frac{1}{1-p} \min\{0, y\} \]
Measures of Utility Beyond Simple Expected Utility

Utility reflecting stochastic ambiguity

- Let u be a nondecreasing concave utility function, normalized
- For a risk envelope Q_0 and an associated divergence J_0, let
 \[U(Y) = \inf_{Q \in Q_0} \{ E[u(Y)Q] + J_0(Q) \} \]
 Then U is a regular measure of utility that is monotonic:
 U is concave, nondecreasing, with $U(0) = 0$ and $U(Y) \leq E[Y]$

Corresponding ambiguity version of regret

- Let v be a nondecreasing convex regret function
- For a risk envelope Q_0 and an associated divergence J_0, let
 \[V(X) = \sup_{Q \in Q_0} \{ E[v(X)Q] - J_0(Q) \} \]
 Then V is a regular measure of regret that is monotonic

Relation to risk: for the risk measure R_0 dual to Q_0, J_0,
 \[U(Y) = -R_0(-u(Y)), \quad V(X) = R_0(v(X)) \]
Passing Now to the Statistics Side of the Risk Quadrangle

\[risk \; R \leftrightarrow D \; deviation \]

optimization \[\uparrow \downarrow \; S \; \downarrow \uparrow \] statistics

regret \[V \leftrightarrow E \; error \]

\(R(X) \) elicits the “level of cost” in \(X \) to use in making comparisons
\(V(X) \) quantifies the “anti-utility” in outcomes \(X > 0 \) versus \(X \leq 0 \)
\(D(X) \) measures the “nonconstancy” in \(X \) as its uncertainty
\(E(X) \) measures the “nonzeroness” in \(X \) for use in estimates
\(S(X) \) is a “statistic” associated with \(X \) through \(E \) and through \(V \)
Deviation as a Quantification of Uncertainty

\(D(X) \) generalizes standard deviation \(\sigma(X) \)

Axioms for regular measures of deviation: \(D : L^2 \rightarrow [0, \infty] \)

(D1) \(D(C) = 0 \) for constant random variables \(C \)
(D2) convexity, (D3) closedness
(D4) robustness: \(D(X) > 0 \) for nonconstant \(X \)

Additional properties of major interest:

(D5) positive homogeneity: \(D(\lambda X) = \lambda D(X) \) when \(\lambda > 0 \)
(D6) upper range boundedness: \(D(X) \leq \sup X - EX \)

Note: \((D1)+(D2) \implies D(X + C) = D(X)\) for constants \(C \)
symmetry not assumed, perhaps \(D(-X) \neq D(X) \)

Example: \(D(X) = \sigma(X) = ||X - EX|| \) fails to satisfy (D6), but \(D(X) = \sigma_+(X) = ||\max\{0, X - EX\}|| \) satisfies all

Extended CAPM: obtained with \(D(X) \) replacing \(\sigma(X) \) (finance)
Risk Versus Deviation

quantification of “cost/loss” versus quantification of uncertainty

Mean±deviation representation of risk measures

A one-to-one correspondence $D \leftrightarrow R$ between regular risk measures R and regular deviation measures D is given by

$$R(X) = EX + D(X), \quad D(X) = R(X - EX),$$

where moreover monotonicity (R6) of risk is characterized by

$R(X)$ satisfies (R6) $\iff D(X)$ satisfies (D6)

Example 1: the risk measure $R(X) = EX + \lambda \sigma(X), \lambda > 0,$ is regular but not monotonic because $D(X) = \lambda \sigma(X)$ fails (D6)

Example 2: the deviation measure $D(X) = CVaR_p(X - EX)$ is not only regular but also, in addition, satisfies (D6)
Deviation From Error

looking now at a concept of “error” that can be asymmetric

Axioms for regular measures of error: \(\mathcal{E} : \mathcal{L}^2 \rightarrow [0, \infty] \)

- (E1) \(\mathcal{E}(0) = 0 \),
- (E2) convexity,
- (E3) closedness
- (E4) robustness: \(\mathcal{E}(X) > 0 \) for nonzero \(X \)

Additional properties of major interest:

- (E5) positive homogeneity: \(\mathcal{E}(\lambda X) = \lambda \mathcal{E}(X) \) when \(\lambda > 0 \)
- (E6) \(\mathcal{E}(X) \leq |EX| \) when \(X \leq 0 \)

Error projection (with respect to constants \(C \))

For a regular error measure \(\mathcal{E} \), let

\[
\mathcal{D}(X) = \min_C \mathcal{E}(X - C), \quad S(X) = \arg\min_C \mathcal{E}(X - C).
\]

Then \(\mathcal{D} \) is a regular deviation measure, \(S \) the associated “statistic”

\(\mathcal{E}(X) \) satisfies (E6) \(\implies \) \(\mathcal{D}(X) \) satisfies (D6)

\(\implies S(X) \) is the constant \(C \) “nearest” to \(X \) with respect to \(\mathcal{E} \)
Some Error/Statistic Examples

Example 1: \(\mathcal{E}(X) = \sqrt{E[X^2]} \) yields \(S(X) = EX \)
this regular measure of error fails to satisfy (E6)

Example 2: \(\mathcal{E}(X) = E|X| \) yields \(S(X) = \text{median of } X \)
this regular measure of error satisfies all

Example 3: \(\mathcal{E}(X) = \sup|X| \) yields \(S(X) = \frac{1}{2}[\sup X + \inf X] \)
this regular measure of error fails to satisfy (E6)

Example 4: \(\mathcal{E}(X) = \frac{1}{1-p} E[\max\{0, X\}] - EX \) yields
the \(p \)-quantile statistic \(S(X) = q_p(X) \)
this asymmetric regular measure of error satisfies all

Example 5: \(\mathcal{E}(X) = E[\exp X - X - 1] \) yields \(S(X) = \log E[\exp X] \)
this asymmetric regular measure of error satisfies all
Available information: e.g. a large collection of pairs \((x_k, y_k)\)
Perspective: empirical distribution in \(x, y\) space of r.v.'s \(X, Y\)
Approximation: \(Y \approx aX + b\), error gap \(Z(a, b) = Y - [aX + b]\)
Regression From a Broader Point of View

\[Y = \text{random variable (scalar) to be understood in terms of} \]
\[X_1, \ldots, X_n = \text{some “more basic” variables (e.g., “factors”)} \]

Approximation scheme:
\[Y \approx f(X_1, \ldots, X_n) \quad \text{for} \quad f \in \mathcal{F} \]
\[\mathcal{F} = \text{some specified class of functions} \quad f : \mathbb{R}^n \rightarrow \mathbb{R} \]
\[\text{e.g. linear, } f(x_1, \ldots, x_n) = c_0 + c_1 x_1 + \cdots + c_n x_n \]

Error gap variable:
\[Z_f = Y - f(X_1, \ldots, X_n) \quad \text{for} \quad f \in \mathcal{F} \]

Regression problem, in general

minimize \(\mathcal{E}(Z_f) \) over all \(f \in \mathcal{F} \) for some error measure \(\mathcal{E} \)

Standard regression:
\[\mathcal{E}(Z_f) = (E[Z_f^2])^{1/2} \quad \text{“least squares”} \]

Quantile regression:
using \(Z^+ = \max\{0, Z\}, \quad Z^- = \max\{0, -Z\} \)
\[\mathcal{E}(Z_f) = E[\frac{p}{1-p}Z_f^+ + Z_f^-] \quad \text{at probability level } p \in (0, 1) \]
Koenker-Bassett error, normalized
Effect of the Choice of Error Measure

error gap variable to be “made small”: \(Z_f = Y - f(X_1, \ldots, X_n) \)

Regression problem “decomposition” (when \(f \in \mathcal{F} \Rightarrow f + C \in \mathcal{F} \))

- minimizing \(\mathcal{E}(Z_f) \) over all \(f \in \mathcal{F} \) corresponds to
- minimizing \(\mathcal{D}(Z_f) \) under the constraint \(S(Z_f) = 0 \)

Important issue for connecting with optimization:

- parameterized “costs” \(c(x) = c(x, V) \) for \(x = (x_1, \ldots, x_n) \)
- can be viewed as \(Y = c(X, V) \) with \(X = (X_1, \ldots, X_n) \)
- \(X = \) “randomized decision” tied to empirical sample at hand

- regression can serve then to get a “formula” for \(c(x) \approx f(x) \)
- for using \(\bar{c}(x) = \mathcal{R}(c(x)) \), shouldn’t this be “tuned” to \(\mathcal{R} \)?
- \(c(X, V) \) may only be supported by some \((X, V) \) database!
Example: an Application to Composition of Alloys

Alloy model: a mixture of various metals
amounts of chief ingredients: \(x = (x_1, \ldots, x_n) \) “design”
amounts of other ingredients: \(v = (v_1, \ldots, v_m) \) “contaminants”
a “characteristic” to be controlled: \(y \) ideally kept \(\leq 0 \), say
due to uncertainty, a quantile constraint may be envisioned

Background information: \(y = c(x, v) \)? no available formula!
there is only a database in \((x, v, y) \)-space, \(\{ (x^k, v^k, y^k) \}_{k=1}^N \)

view the database as an empirical distribution for random
variables \(X = (X_1, \ldots, X_n), \ V = (V_1, \ldots, V_m), \ Y \)
use regression of \(Y \) on \(X_1, \ldots, X_N \) to get a function \(y = \tilde{c}(x) \)
then impose the constraint \(\tilde{c}(x) \leq 0 \) on the design \(x \)

shouldn’t the regression adapt then to the intended constraint?
Some References on Generalized Regression

Finishing the Quadrangle Scheme

\[
\begin{align*}
\text{risk } R & \leftrightarrow D \text{ deviation} \\
\text{optimization} & \quad \updownarrow S \quad \downuparrow \\
\text{regret } V & \leftrightarrow E \text{ error}
\end{align*}
\]

Error versus regret

The one-to-one correspondence

\[
\begin{align*}
\mathcal{E}(X) &= \mathcal{V}(X) - EX, \\
\mathcal{V}(X) &= EX + \mathcal{E}(X)
\end{align*}
\]

coordinates error and regret with the same “statistic”

\[
S(X) = \arg\min_C \mathcal{E}(X - C) \leftrightarrow S(X) = \arg\min_C \{C + \mathcal{V}(X - C)\}
\]

Final links: nonunique but “natural” inversions \(D \to \mathcal{E}, \ R \to \mathcal{V} \)
articulated with a scaling parameter $\lambda > 0$

$S(X) = EX$
$= \text{mean}$

$\mathcal{E}(X) = \lambda (E[X^2])^{1/2}$
$= L^2\text{-error, scaled}$

$D(X) = \lambda \sigma(X)$
$= \text{standard deviation, scaled}$

$R(X) = EX + \lambda \sigma(X)$
$= \text{safety margin risk}$

$V(X) = EX + \lambda (E[X^2])^{1/2}$
$= L^2\text{-regret}$

properties: \textit{aversity} with \textit{convexity}, but NOT coherency
The Quantile-Based Quadrangle

at any probability level \(p \in (0, 1) \)

\[
\begin{align*}
S(X) &= q_p(X) = \text{VaR}_p(X) \\
&= \text{quantile} \\
\mathcal{R}(X) &= Q_p(X) = \text{CVaR}_p(X) \\
&= \text{superquantile} \\
D(X) &= Q_p(X - EX) = \text{CVaR}_p(X - EX) \\
&= \text{superquantile deviation} \\
E(X) &= E[\frac{p}{1-p}X_+ + X_-] \\
&= \text{Koenker-Basset error, normalized} \\
\mathcal{V}(X) &= \frac{1}{1-p}E[X_+] \\
&= \text{expected absolute loss, scaled}
\end{align*}
\]

properties: **aversity with coherency**
The Median-Based Quadrangle

the quantile case at probability level \(p = 1/2 \)

\[S(X) = \text{VaR}_{1/2}(X) = q_{1/2}(X) \]

= median

\[R(X) = \text{CVaR}_{1/2}(X) = Q_{1/2}(X) \]

= “supermedian” (average in tail above median)

\[D(X) = \text{CVaR}_{1/2}(X - EX) = Q_{1/2}(X - EX) \]

= supermedian deviation

\[E(X) = E|X| \]

= \(L^1 \)-error

\[V(X) = 2E[X_+] \]

= \(L^1 \)-regret

properties: aversity with coherency
The Max-Based Quadrangle

corresponding to the limit of the quantile case as $p \to 1$

\[S(X) = \frac{1}{2} [\sup X + \inf X] \]
\[= \text{center of the (essential) range of } X \]

\[R(X) = \sup X \]
\[= \text{top of the (essential) range of } X \]

\[D(X) = \frac{1}{2} [\sup X - \inf X] \]
\[= \text{radius of the (essential) range of } X \]

\[E(X) = \sup |X| \]
\[= \mathcal{L}^\infty \text{-error} \]

\[V(X) = \sup [X - EX] \]
\[= \mathcal{L}^\infty \text{-regret (max excess of “cost” over average)} \]

properties: **aversity** with **coherency**
The Log-Exponential-Based Quadrangle

\[S(X) = \log E[e^X] \]
\[= \textbf{dual} \text{ expression for Boltzmann-Shannon entropy} \]
\[R(X) = \log E[e^X] \]
\[= \text{yes, the same as } S(X)! \]
\[D(X) = \log E[e^X - EX] \]
\[= \text{log-exponential deviation} \]
\[E(X) = E[\varepsilon(X)] \text{ with } \varepsilon(x) = e^x - x - 1 > 0 \text{ when } x \neq 0 \]
\[= \text{exponential error} \]
\[V(X) = E[v(X)] \text{ with } v(x) = e^x - 1 \begin{cases} > 0 \text{ when } x > 0 \\ < 0 \text{ when } x < 0 \end{cases} \]
\[= \text{exponential regret} \]

properties: \textbf{aversity with coherency}