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where f is convex but not differentiable at some points,

we shall define algorithms based on information provided by an

oracle or “black box”
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What do we mean by an algorithm?

An algorithm

is a sequence of steps

that are repeated

until satisfaction

of a stopping test



Back to Computational NSO

For the unconstrained problem

-,

where f is convex but not differentiable at some points,

we look for algorithms based on information provided by an oracle

or “black box”

endowed with reliable F{J ) 01iTe TS
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What can be done with the oracle information?

An example of a convex nonsmooth function

f(x) + VEF(X)T(y-x)| <

of(x) = {Vf(x)}

= {slopes of linearizations supporting f, tangent at x }
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What can be done with the oracle information?

An example of a convex nonsmooth function

of(x) = {gelR™:f(y)>f(x)+g'(y—x) forall y}

= {slopes of linearizations supporting f, tangent at x}
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Why special NSO methods?

Smooth optimization methods

- T(x)  =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]
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How is the oracle information used?

We look for algorithms based on information provided by an oracle

) { ™ xxErctewexixwktkixet otk X IOPPIXEEXDS
(x) € of(

x)

Subgradient Methods

0 Choose x' and set k = 1.

1 Call the oracle at x*

2 Compute x*! =x* —1t; ||9( ) for a suitable stepsize ty > 0.
3 Make k =k+ 1 and loop to 1

Is this a good “‘recipe”?
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Subgradient Methods

0 Choose x' and set k = 1.
1 Call the oracle at x¥
2 Compute x*T! =xk — 1ty 9( ) for a suitable stepsize ty > 0.

kTlg(
3 Make k =k -+ 1 and loop tol
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Non-monotone!
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Subgradient Methods: why a “not-good” recipe

)
Non-monotone functional values, but converges

¢ because distance to solution set decreases for Y_ty = +00,)_ti < +00

\ Lacks a stopping test

...does not use all EA2HEN (Y information

X
g(x) € 0f(x)

SG methods are like caipirinha without cachaca




How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)

) { endowed with reliable stopping tests
g(x) € of(x)



How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)

) { endowed with reliable stopping tests
g(x) € of(x)

Black box information defines linearizations




How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)
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g(x) € of(x)

Black box information defines linearizations

that put together create a of the function f.

The model 1s used to define iterates and to put in place a reliable

stopping test
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How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)

) 4< endowed with reliable stopping tests
g(x) € 9f(x)

Black box information defines linearizations

that put together create a of the function f.

. flzf 1 . : :
v ) M) = max it g T (x—x))

1__ (Xi) _ _
g T g (just an example, many other models are possible)
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To minimize f (unavailable in an explicit manner), minimize its
model M(x) = max; {fi + g T (x — xi)}
Improve the model at each iteration:
Micii(x) = maxicip {f+97 (x—x") }
_ max (Mk(x), Flet] 4 g1 T (5 — It ))

K+1

where X' minimizes My

Instead of x* € argminf(x) at one shot,

X1 € argminMy (x) BESe U N



Cutting-plane methods

J(x)

[ X'
L

Artificial bounding at least for the first iterations



Cutting-plane methods

J(x)

T
<
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Cuttina-plane methods

(M (x** 1)} increases
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Cutting-plane methods

[My (x*1)} increases but not necessarily the functional values:

f(x°) > f(x*). Stopping test measures &y := f(x*) — My_1 (x*)



Cutting-plane Methods

0 Choose x' and set k = 1.

1 Call the oracle at x*.

k+1

2 Compute x*"' € argminy My (x)

3 My, () = max(Mk(-),fk+ng(-—xk)), k=%k+1,loopto 1.



Cutting-plane Methods

0 Choose x' and set k = 1.

1 Call the oracle at x*.If f(x*) —M_; (x*) < tol KIN0) %

K+1

2 Compute x*"' € argminy My (x)

3 My, () = max(Mk(-),fk+ng(-—xk)), k=%k+1,loopto 1.

' CP methods are é}QQJ
an improved algorithmic version ‘QJ
of the Aussie sign Q}
&
O
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