ALGORITHMS FOR TWO-STAGE SP:
A PRIMER ON NONSMOOTH
OPTIMIZATION

Claudia Sagastizabal

BAS Lecture 9, April 7, 2016, IMPA

}VAN 2016

Set YouTube resolution to
430p

for best viewing

Two-Stage LP with RCRa, Q={w!,...,w>)}
min ¢' X+ ¢ (x) for X:={x>0:Ax =Db},

xeX
where ¢p(x) =E [} Zps X ,&°) and
(: ST
min r
s T max 7' (h®—T5x)
Qx ,&)=<¢ st. Wsy=hs—-T% = <
s.t. WsTm< (¢’
y=>0)

S
Op(xk) = — Y poT* Targmax {7 (h* —Tx*) : € T1(q*) }

s=1

4next lecture: without Relative Complete Recourse (infeasibility!)

Two-Stage LP with RCRa, Q={w!,...,w>)}
min ¢' X+ ¢ (x) for X:={x>0:Ax =b},

xeX
where b (x¥)=E [} Zps K £3) and
(. ST
min r
K -5 Ty max 7 (h® —T5xK)
Qx5 &)=< st. Wosy=hs—-Tsxk =«
) st WsTn < g®
Yy

S
dp(xk) = — Y poT* Targmax {7’ (h* —T*x*) : € T1(q*) }

s=1

4next lecture: without Relative Complete Recourse (infeasibility!)

TWO'Stage LP with RCR, Q={w',...,w>

min ¢' X+ ¢ (x) for

xeX

where d(x¥) =

Q(Xkﬂ(—vs) —

\

2

\

[} Zps

min q°* 'y
s.t. WPy =h®
y >0

Primal solution y>*

db(x¥) =

X:={x>0:Ax =b},

—TSXk

y

\

and

max 7t (hS—T5x

st. W< g

Dual solution 7t

s,k

S
—ZpSTS "argmax {WT(hS —T5x%) e ﬂ(qs)}

s=1

<)

Evaluating ¢ (x ZPS SKT(hS —T5xK)

Evaluating ¢ (x Zps SKT(hs —T5x9)

S
e for free a subgradient Rt Z]:)STS Tk e 9 (xK)
s=1

Evaluating ¢ (x ZPS SKT(hs —T5x9)

gives for free a subgradient y* = — Zp T80k € 9 (%) and

the linearization

b () +v* T (x—x¥)

S
_ Zpsﬂs’kT(hS_Ts k Zps skTTS(X Xk)

s=1
= Zps SkT —T°x)

Evaluating ¢ (x ZPS SKT(hs —T5x9)

gives for free a subgradient y* = — Zp T80k € 9 (%) and

the linearization

b(x) >)y (x—x")

S
_ Zpsﬂs’kT(hS_Ts k Zps SkTTS(X Xk)

s=1
= Zps SkT —T°x)

Evaluating ¢ at x¥

1st-stage problem

< (b (Xk) gz:'lzll((llii:? >

Q(xk,&h)

Q(x*,&>)

2nd-stage subproblems

Evaluating ¢ at x¥

S
A= the linearization [olE9Es Zpsﬂs’h(hs —T°x)
s=1

Q(x*, &)
>
< (b (Xk) gz:'lell((llii:? >

1st-stage problem

Q(x*,&>)

2nd-stage subproblems

Evaluating ¢ at x¥

S
A= the linearization [olE9Es Zpsﬂs’h(hs —T°x)
s=1

Qxk,el) 2
P
E —
e
2 Xk =)
= P
2 =
=5 =
o 7]
& Tasub S0
= [0 (Xk) chatats s
- 7
7
=)
_ &
Q(x*,&3)

min,cx f(x) convex nonsmooth knowing f(x) and g(x) € 0f(x) (one)

Computational NSO: what does it mean?

For the unconstrained® problem

-,

where f 1s convex but not differentiable at some points

AX =1R™ today

Computational NSO: what does it mean?

For the unconstrained problem

-,

where f is convex but not differentiable at some points,

we shall define algorithms based on information provided by an

oracle or “black box”

What do we mean by an algorithm?

AIl example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

What do we mean by an algorithm?

repeat until ...??

What do we mean by an algorithm?

| g

that are repeated

.I f : II
An algorithm
l P is a sequence of steps
—

i -

until satisfaction

What do we mean by an algorithm?

An algorithm

is a sequence of steps

that are repeated

until satisfaction

of a stopping test

Back to Computational NSO

For the unconstrained problem

-,

where f is convex but not differentiable at some points,

we look for algorithms based on information provided by an oracle

or “black box”

endowed with reliable F{J) 01iTe TS

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

f(x) + VEF(X)T(y-x)| <

of(x) = {Vf(x)}

= {slopes of linearizations supporting f, tangent at x }

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

of(x) = {gelR™:f(y)>f(x)+g'(y—x) forall y}
f X

What can be done with the oracle information?

An example of a convex nonsmooth function

of(x) = {gelR™:f(y)>f(x)+g'(y—x) forall y}

= {slopes of linearizations supporting f, tangent at x}

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

f(x)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

(%)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

f(0)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

0

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

Why special NSO methods?

Smooth optimization methods

- Tx) =[]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

0

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

Finite difference approximations fail JULEDITOLET Wi G E0)

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

0

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)
Finite difference approximations fail

Linesearches get trapped in kinks and fail

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

0

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)
Finite difference approximations fail

Linesearches get trapped in kinks and fail

—g(x*) may not provide descent

Why special NSO methods?

Smooth optimization methods

- T(x) =Ix]
VE(x®)] =1,V¥x#£0 0of(0)=[-1,1]

0

Smooth stopping test fails: |Vf(x*)| <TOL (& |g(x*)| <TOL)

=

Finite difference approximations fail

€

Linesearches get trapped in kinks a

—g(x

\ 4 £ ///
k) may not provide descent * k&y : / 5

How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)

) { endowed with reliable stopping tests
g(x) € of(x)

How is the oracle information used?

We look for algorithms based on information provided by an oracle

) ™ xxeEnctawerxwitkixek ok X KOpPIRRNEX S

x)

How is the oracle information used?

We look for algorithms based on information provided by an oracle

) ™ xxErctewexixwktkixet otk X IOPPIXEEXDS

x)

Subgradient Methods

How is the oracle information used?

We look for algorithms based on information provided by an oracle

) { ™ xxErctewexixwktkixet otk X IOPPIXEEXDS
(x) € of(

x)

Subgradient Methods

0 Choose x' and set k = 1.

1 Call the oracle at x¥

2 Compute x*T1 =xk—1t; ||9() for a suitable stepsize ti > 0.

3 Make k =k+ 1 and loop to 1

How is the oracle information used?

We look for algorithms based on information provided by an oracle

) { ™ xxErctewexixwktkixet otk X IOPPIXEEXDS
(x) € of(

x)

Subgradient Methods

0 Choose x' and set k = 1.

1 Call the oracle at x*

2 Compute x*! =x* —1t; ||9() for a suitable stepsize ty > 0.
3 Make k =k+ 1 and loop to 1

Is this a good “‘recipe”?

Subgradient Methods

0 Choose x' and set k = 1.
1 Call the oracle at x¥
2 Compute x*T! =xk — 1ty 9() for a suitable stepsize ty > 0.

kTlg(
3 Make k =k -+ 1 and loop tol

SG methods are
the algorithmic version

of this road sign

Subgradient Methods

0 Choose x' and set k = 1.

1 Call the oracle at x¥

2 Compute x*1 = xk—1t; Hg() for a suitable stepsize ti > 0.

3 Make k =k+ 1 and loop to 1

SG methods are
the algorithmic version

of this road sign

.something 1s missing!!!

Subgradient Methods

0 Choose x' and set k = 1.

1 Call the oracle at x¥

2 Compute x*T! =xk — 1ty Hg(

3 Make k =k+ 1 and loop to 1

“)

for a suitable stepsize ti > 0.

SN
SG methods are ‘Q
the algorithmic version Qb
of this road sign qoe
\‘b
Q

Subgradient Methods

0 Choose x' and set k = 1.
1 Call the oracle at x¥
2 Compute x*T! =xk — 1ty 9() for a suitable stepsize ty > 0.

kTlg(
3 Make k =k -+ 1 and loop tol

Q
SN
SG methods are ‘Q
the algorithmic version Qb
of this road sign qoe
\‘b
QO

Non-monotone!

Subgradient Methods: why a “not-good” recipe

,
Non-monotone functional values, but converges

¢ because distance to solution set decreases for Y_ty = +00,)_ti < +00

Subgradient Methods: why a “not-good” recipe

)
Non-monotone functional values, but converges

¢ because distance to solution set decreases for Y_ty = +00,)_ti < +00

Constrained case dealt with by projecting onto X: reasonable for simple X only

Subgradient Methods: why a “not-good” recipe

)
Non-monotone functional values, but converges

¢ because distance to solution set decreases for Y_ty = +00,)_ti < +00

Lacks a stopping test

\

Subgradient Methods: why a “not-good” recipe

)
Non-monotone functional values, but converges

¢ because distance to solution set decreases for Y_ty = +00,)_ti < +00

Lacks a stopping test

\

...does not use all available information

Subgradient Methods: why a “not-good” recipe

)
Non-monotone functional values, but converges

¢ because distance to solution set decreases for Y_ty = +00,)_ti < +00

Lacks a stopping test

\

...does not use all EA2HEN (Y information

1{6.4)

X
g(x) € 0f(x)

Subgradient Methods: why a “not-good” recipe

)
Non-monotone functional values, but converges

¢ because distance to solution set decreases for Y_ty = +00,)_ti < +00

\ Lacks a stopping test

...does not use all EA2HEN (Y information

X
g(x) € 0f(x)

SG methods are like caipirinha without cachaca

How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)

) { endowed with reliable stopping tests
g(x) € of(x)

How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)

) { endowed with reliable stopping tests
g(x) € of(x)

Black box information defines linearizations

How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)

) { endowed with reliable stopping tests
g(x) € of(x)

Black box information defines linearizations

that put together create a of the function f.

The model 1s used to define iterates and to put in place a reliable

stopping test

How is the oracle information used?

We look for algorithms based on information provided by an oracle

. a< " endowed with reliable stopping tests
g(x) € of(x)

Black box information defines linearizations

xt — — f' 4+ g7 (x —x)

How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)

) 4< endowed with reliable stopping tests
g(x) € 9f(x)

Black box information defines linearizations

that put together create a of the function f.

. flzf 1 . : :
v) M) = max it g T (x—x))

gt =g(x")

How is the oracle information used?

We look for algorithms based on information provided by an oracle

f(x)

) 4< endowed with reliable stopping tests
g(x) € 9f(x)

Black box information defines linearizations

that put together create a of the function f.

. flzf 1 . : :
v) M) = max it g T (x—x))

1__ (Xi) _ _
g T g (just an example, many other models are possible)

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its
model M(x) = max; {fi +g'T(x —xi)}

Improve the model at each iteration

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its
model M(x) = max; {fi +g'T(x— xi)}

Improve the model at each iteration:

Mici(x) = maxige {497 (x—x) |
— max(Mk(x),ka—|—gk+1T(x—xk+1))

K+1

where X' minimizes My

Cutting-plane methods
To minimize f (unavailable in an explicit manner), minimize its
model M(x) = max; {fi +g'T(x— xi)}
Improve the model at each iteration:
Micii(x) = maxicip {f+97 (x—x") }
_ max (Mk(x))fkﬂ 4 gt (x —]))

K+1

where X' minimizes My

Instead of x* € argminf(x) at one shot

Cutting-plane methods
To minimize f (unavailable in an explicit manner), minimize its
model M(x) = max; {fi + g T (x — xi)}
Improve the model at each iteration:
Micii(x) = maxicip {f+97 (x—x") }
_ max (Mk(x), Flet] 4 g1 T (5 — It))

K+1

where X' minimizes My

Instead of x* € argminf(x) at one shot,

X1 € argminMy (x) BESe U N

Cutting-plane methods

J(x)

[X'
L

Artificial bounding at least for the first iterations

Cutting-plane methods

J(x)

T
<

Cutting-plane methods

Cutting-plane methods

Cutting-plane methods

Cutting-plane methods

Cuttina-plane methods

(M (x** 1)} increases

Cutting-plane methods

[My (x*1)} increases but not necessarily the functional values:
f(x°) > f(x*)

Cutting-plane methods

[My (x*1)} increases but not necessarily the functional values:

f(x°) > f(x*). Stopping test measures &y := f(x*) — My_1 (x*)

Cutting-plane Methods

0 Choose x' and set k = 1.

1 Call the oracle at x*.

k+1

2 Compute x*"' € argminy My (x)

3 My, () = max(Mk(-),fk+ng(-—xk)), k=%k+1,loopto 1.

Cutting-plane Methods

0 Choose x' and set k = 1.

1 Call the oracle at x*.If f(x*) —M_; (x*) < tol KIN0) %

K+1

2 Compute x*"' € argminy My (x)

3 My, () = max(Mk(-),fk+ng(-—xk)), k=%k+1,loopto 1.

' CP methods are é}QQJ
an improved algorithmic version ‘QJ
of the Aussie sign Q}
&
O

>

