Incremental constraint projection methods for stochastic variational inequalities

Philip Thompson
Workshop on *Analysis and Applications of Stochastic Systems*

Center for Mathematical Modeling (CMM), Chile

28th, March, 2016, Rio de Janeiro
Contents

- Definition & Methodology
Definition & Methodology

Incremental constraint one-projection SA method with *weaksharpness*
Contents

- Definition & Methodology
- Incremental constraint one-projection SA method with *weaksharpness*
- Incremental constraint one-projection SA method with regularization
Contents

- Definition & Methodology
- Incremental constraint one-projection SA method with *weaksharpness*
- Incremental constraint one-projection SA method with regularization
- Incremental constraint extragradient SA method
Stochastic variational inequality: generalization of stochastic optimization
Stochastic variational inequality: generalization of stochastic optimization

Assume

- **Random operator**: $F : \Xi \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a Carathéodory map on a measurable space (Ξ, \mathcal{G}).
Stochastic variational inequality: generalization of stochastic optimization

Assume

- **Random operator**: $F : \Xi \times \mathbb{R}^n \to \mathbb{R}^n$ is a Carathéodory map on a measurable space (Ξ, \mathcal{G}),
- **Randomness**: $\xi : \Omega \to \Xi$ is a r.v. on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
Stochastic variational inequality: generalization of stochastic optimization

Assume

- **Random operator**: \(F : \Xi \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a Carathéodory map on a measurable space \((\Xi, \mathcal{G})\),
- **Randomness**: \(\xi : \Omega \rightarrow \Xi \) is a r.v. on the probability space \((\Omega, \mathcal{F}, \mathbb{P})\),
- **Mean operator**: \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) satisfies

\[
T(x) = \mathbb{E}[F(\xi, x)], \quad \forall x \in \mathbb{R}^n.
\]
Stochastic variational inequality: generalization of stochastic optimization

Assume

- **Random operator**: $F : \Xi \times \mathbb{R}^n \to \mathbb{R}^n$ is a Carathéodory map on a measurable space (Ξ, \mathcal{G}),
- **Randomness**: $\xi : \Omega \to \Xi$ is a r.v. on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- **Mean operator**: $T : \mathbb{R}^n \to \mathbb{R}^n$ satisfies
 \[T(x) = \mathbb{E}[F(\xi, x)], \quad \forall x \in \mathbb{R}^n. \]
- **Feasible set**: $X \subset \mathbb{R}^n$ closed and convex.
Stochastic variational inequality: generalization of stochastic optimization

Assume

- **Random operator**: \(F : \Xi \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a Carathéodory map on a measurable space \((\Xi, \mathcal{G})\),
- **Randomness**: \(\xi : \Omega \rightarrow \Xi \) is a r.v. on the probability space \((\Omega, \mathcal{F}, \mathbb{P})\),
- **Mean operator**: \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) satisfies
 \[
 T(x) = \mathbb{E}[F(\xi, x)], \quad \forall x \in \mathbb{R}^n.
 \]
- **Feasible set**: \(X \subset \mathbb{R}^n \) closed and convex.

Definition (SVI)

Supposing \(T := \mathbb{E}[F(\xi, \cdot)] \), almost surely find \(x^* \in X \) s.t. \(\forall x \in X \),

\[
\langle T(x^*), x - x^* \rangle \geq 0.
\]
Stochastic Equilibrium
Stochastic Equilibrium

Multi-agent stochastic optimization:

\[
\begin{align*}
\min & \quad \sum_{i=1}^{m} \mathbb{E}[f_i(\xi, x)] \\
\text{s.t.} & \quad x \in X^1 \times \ldots \times X^m.
\end{align*}
\]

SVI with

- \(X := X^1 \times \ldots \times X^m, \)
- \(F := (\nabla f_1, \ldots, \nabla f_m). \)
Stochastic Equilibrium

Multi-agent stochastic optimization:

\[
\begin{align*}
\min & \quad \sum_{i=1}^{m} \mathbb{E}[f_i(\xi, x)] \\
\text{s.t.} & \quad x \in X^1 \times \ldots \times X^m.
\end{align*}
\]

SVI with
- \(X := X^1 \times \ldots \times X^m \),
- \(F := (\nabla f_1, \ldots, \nabla f_m) \).

Stochastic Nash-Equilibria: find \(x^* \in \prod_{i=1}^{m} X^i \) s.t. for all \(i \in [m] \),

\[
x_i^* \in \arg\min_{x_i \in X^i} \mathbb{E}[f_i(\xi, x_i, x_{-i}^*)].
\]

SVI with
- \(X := X^1 \times \ldots \times X^m \),
- \(F := (\nabla_{x_1} f_1, \ldots, \nabla_{x_m} f_m) \).
Stochastic Approximation (SA) methods for SVI
Stochastic Approximation (SA) methods for SVI

Framework:

- **Unavailability** of T.
Stochastic Approximation (SA) methods for SVI

Framework:

- **Unavailability** of T.
- **Stochastic oracle**: given $x^k \in \mathbb{R}^n$ and sample ξ^k of ξ, $F(\xi^k, x^k)$ is available.
Framework:

- **Unavailability** of T.
- **Stochastic oracle**: given $x^k \in \mathbb{R}^n$ and sample ξ^k of ξ, $F(\xi^k, x^k)$ is available.
- **Stochastic approximation (SA)**: use a deterministic method with $F(\xi^k, x^k)$ instead of $T(x^k)$.
Framework:

- **Unavailability** of T.
- **Stochastic oracle**: given $x^k \in \mathbb{R}^n$ and sample ξ^k of ξ, $F(\xi^k, x^k)$ is available.
- **Stochastic approximation** (SA): use a deterministic method with $F(\xi^k, x^k)$ instead of $T(x^k)$.
- **Oracle error**:
 $$\epsilon(\xi^k, x^k) := F(\xi^k, x^k) - T(x^k).$$
Stochastic Approximation (SA) methods for SVI

Framework:

- **Unavailability** of T.
- **Stochastic oracle**: given $x^k \in \mathbb{R}^n$ and sample ξ^k of ξ, $F(\xi^k, x^k)$ is available.
- **Stochastic approximation** (SA): use a deterministic method with $F(\xi^k, x^k)$ instead of $T(x^k)$.
- **Oracle error**:
 \[
 \epsilon(\xi^k, x^k) := F(\xi^k, x^k) - T(x^k).
 \]
- **Monotonicity-type**.
Stochastic Approximation (SA) methods for SVI

Framework:

- **Unavailability** of T.
- **Stochastic oracle**: given $x^k \in \mathbb{R}^n$ and sample ξ^k of ξ, $F(\xi^k, x^k)$ is available.
- **Stochastic approximation** (SA): use a deterministic method with $F(\xi^k, x^k)$ instead of $T(x^k)$.
- **Oracle error**:
 \[\epsilon(\xi^k, x^k) := F(\xi^k, x^k) - T(x^k). \]
- **Monotonicity**-type.

Random incremental constraint projection

Framework:

- **Difficult access** to $X = \bigcap_{i \in I} X_i$:
 - Difficult projections,
 - Large number of constraints,
 - Online learning of constraints.
Random incremental constraint projection

Framework:

- **Difficult access** to $X = \bigcap_{i \in I} X_i$:
 - Difficult projections,
 - Large number of constraints,
 - Online learning of constraints.

- Alternative: **random sampling** of constraint component X_{ω_k},
Random incremental constraint projection

Framework:

- **Difficult access** to $X = \bigcap_{i \in I} X_i$:
 - Difficult projections,
 - Large number of constraints,
 - Online learning of constraints.

- Alternative: **random sampling** of constraint component X_{ω_k},

- **Feasibility error**:
 $$d(x^k) := d(x^k, X).$$
Random incremental constraint projection

Framework:

- **Difficult access** to $X = \cap_{i \in I} X_i$:
 - Difficult projections,
 - Large number of constraints,
 - Online learning of constraints.

- Alternative: **random sampling** of constraint component X_{ω_k},

- **Feasibility error:**

 $$d(x^k) := d(x^k, X).$$

- **Regularity of set:** Slater-type conditions. Mild condition in practice.
Random incremental constraint projection

Framework:

- **Difficult access** to $X = \bigcap_{i \in I} X_i$:
 - Difficult projections,
 - Large number of constraints,
 - Online learning of constraints.

- Alternative: **random sampling** of constraint component X_{ω_k},

- **Feasibility error**:
 $$d(x^k) := d(x^k, X).$$

- **Regularity of set**: Slater-type conditions. Mild condition in practice.

Applications: large-data set problems, online optimization and equilibrium, distributed learning (eg, distributed regression).
An incremental constraint one-projection method
An incremental constraint one-projection method

Set-up:

\[X = X_0 \cap \bigcap_{i \in \mathcal{I}} X_i. \]
An incremental constraint one-projection method

Set-up:

\[X = X_0 \cap \left(\cap_{i \in I} X_i \right). \]

Assume:

- projection onto \(X_0 \) is computationally easy (HARD CONSTRAINT),
An incremental constraint one-projection method

Set-up:

\[X = X_0 \cap (\cap_{i \in I} X_i). \]

Assume:

- projection onto \(X_0 \) is computationally easy (HARD CONSTRAINT),
- \(\forall i \in I, X_i = \{ x \in \mathbb{R}^n : g_i(x) \leq 0 \} \), (SOFT CONSTRAINTS)
 - subgradients of \(g_i^+(x) \) are easily computable,
An incremental constraint one-projection method

Set-up:

\[X = X_0 \cap (\cap_{i \in \mathcal{I}} X_i) . \]

Assume:
- Projection onto \(X_0 \) is computationally easy (HARD CONSTRAINT),
- \(\forall i \in \mathcal{I}, X_i = \{ x \in \mathbb{R}^n : g_i(x) \leq 0 \} \), (SOFT CONSTRAINTS)
 - Subgradients of \(g_i^+(x) \) are easily computable,
 - \(\{ \partial g_i^+ : i \in \mathcal{I} \} \) is uniformly bounded over \(X_0 \).
An incremental constraint one-projection method

Set-up:

\[X = X_0 \cap (\cap_{i \in \mathcal{I}} X_i). \]

Assume:

- projection onto \(X_0 \) is computationally easy (HARD CONSTRAINT),
- \(\forall i \in \mathcal{I}, X_i = \{ x \in \mathbb{R}^n : g_i(x) \leq 0 \} \), (SOFT CONSTRAINTS)
 - subgradients of \(g_i^+(x) \) are easily computable,
 - \(\{ \partial g_i^+ : i \in \mathcal{I} \} \) is uniformly bounded over \(X_0 \).

Typical example: if \(X_i \) has easy projections set \(g_i := d(\cdot, X_i) \):

- \(\sup_{x \in \mathbb{R}^n} \| \partial g_i(x) \| \leq 1 \),
- \(\frac{x - \Pi_{X_i}(x)}{\|x - \Pi_{X_i}(x)\|} \in \partial g_i(x) \).
An incremental constraint projection method

Algorithm

\[y^k = \Pi_{X_0} \left[x^k - \alpha_k \left(F(\xi^k, x^k) + \epsilon_k x^k \right) \right], \]

\[x^{k+1} = \Pi_{X_0} \left[y^k - \beta_k \frac{g_{\omega_k}^+(y^k)}{\|d_k\|^2} d_k \right], \]

where \(d_k \in \partial g_{\omega_k}^+(y^k) - \{0\} \) if \(g_{\omega_k}(y^k) > 0 \).
An incremental constraint projection method

Typical example: soft constraints with easy **projection**:

Algorithm

\[
y^k = x^k - \alpha_k \left(F(\xi^k, x^k) + \epsilon_k x^k \right),
\]

\[
x^{k+1} = \Pi_{x_0} \left[y^k - \beta_k \left(y^k - \Pi_{\omega_k}(y^k) \right) \right].
\]
Case 1: Monotone weak-sharp SVI & $\epsilon^k \equiv 0$
Case 1: Monotone weak-sharp SVI & $\epsilon^k \equiv 0$

Assumptions:

- T is monotone and weak-sharp:

$$\langle T(x^*), x - x^* \rangle \geq \rho d(x, X^*), \forall x \in X, \forall x^* \in X^*.$$
Case 1: Monotone weak-sharp SVI & $\epsilon^k \equiv 0$

Assumptions:

- T is monotone and weak-sharp:
 $$\langle T(x^*), x - x^* \rangle \geq \rho d(x, X^*), \forall x \in X, \forall x^* \in X^*.$$

- Bounded operator or Lipschitz operator.
Case 1: Monotone weak-sharp SVI & $\epsilon^k \equiv 0$

Assumptions:

- T is monotone and weak-sharp:
 \[
 \langle T(x^*), x - x^* \rangle \geq \rho d(x, X^*), \forall x \in X, \forall x^* \in X^*.
 \]

- Bounded operator or Lipschitz operator.
- Unbiased oracle with \textit{finite} variance (non-uniform variance).
Case 1: Monotone weak-sharp SVI & $\epsilon^k \equiv 0$

Assumptions:

- T is monotone and weak-sharp:
 \[
 \langle T(x^*), x - x^* \rangle \geq \rho d(x, X^*), \forall x \in X, \forall x^* \in X^*.
 \]

- Bounded operator or Lipschitz operator.
- Unbiased oracle with finite variance (non-uniform variance).

Constraint sampling and regularity:

\[
d(x, X)^2 \leq c \mathbb{E} \left[\left(g_{\omega_k}^+(x) \right)^2 \big| F_k \right], \forall x \in X_0.
\]
Case 1: Monotone weak-sharp SVI & $\epsilon^k \equiv 0$

Assumptions:
- T is monotone and weak-sharp:
 \[
 \langle T(x^*), x - x^* \rangle \geq \rho d(x, X^*), \forall x \in X, \forall x^* \in X^*.
 \]
- Bounded operator or Lipschitz operator.
- Unbiased oracle with *finite* variance (non-uniform variance).
- **Constraint sampling and regularity:**
 \[
 d(x, X)^2 \leq c \mathbb{E} \left[(g_{\omega_k}^+(x))^2 \mid F_k \right], \forall x \in X_0.
 \]
- **Small stepsizes:** $\alpha_k > 0$, $\beta_k \in (0, 2)$ without knowledge of problem parameters and
 \[
 \sum_{k=0}^{\infty} \alpha_k = \infty, \quad \sum_{k=0}^{\infty} \alpha_k^2 < \infty, \quad \sum_{k=0}^{\infty} \frac{\alpha_k^2}{\beta_k(2 - \beta_k)} < \infty.
 \]
Constraint sampling and regularity

Typical case: \(\{ X_i : i \in I \} \) with easy projection and \(1 \ll |I| < \infty \):
Typical case: \(\{ X_i : i \in I \} \) with easy projection and \(1 \ll |I| < \infty \):

- **Linear regularity:** for all \(x \in X_0 \)

\[
d(x, X)^2 \leq \eta \max_{i \in I} d(x, X_i)^2,
\]
Constraint sampling and regularity

Typical case: $\{X_i : i \in \mathcal{I}\}$ with easy projection and $1 << |\mathcal{I}| < \infty$:

- **Linear regularity:** for all $x \in X_0$

 $$d(x, X)^2 \leq \eta \max_{i \in \mathcal{I}} d(x, X_i)^2,$$

- **Uniform independent sampling:** $i \in \mathcal{I},$

 $$\mathbb{P}(\omega_k = i | \mathcal{F}_k) = \frac{1}{|\mathcal{I}|}.$$
Typical case: \(\{ X_i : i \in \mathcal{I} \} \) with easy projection and \(1 \ll |\mathcal{I}| \ll \infty \):

- **Linear regularity**: for all \(x \in X_0 \)
 \[
d(x, X)^2 \leq \eta \max_{i \in \mathcal{I}} d(x, X_i)^2,\]

- **Uniform independent sampling**: \(i \in \mathcal{I} \),
 \[
 \mathbb{P}(\omega_k = i | \mathcal{F}_k) = \frac{1}{|\mathcal{I}|}.
 \]

Then condition holds with \(c = O(|\mathcal{I}|/\eta) \).
Theorem (Asymptotic convergence)

A.s. the sequence \(\{x^k\} \) is bounded and

\[
\lim_{k \to \infty} d(x^k, X^*) = 0.
\]
Theorem (Asymptotic convergence)

A.s. the sequence \(\{x^k\} \) is bounded and

\[\lim_{k \to \infty} d(x^k, X^*) = 0. \]

Proposition (Boundedness in \(L^2 \))

The generated sequence \(\{x^k\} \) is bounded in \(L^2 \) with explicit constant estimates for \(\mathbb{E}[\|x^k - x^*\|^2] \).
Theorem (Rate of convergence: unbounded case)

Given $\theta > 0$ and $\lambda > 0$ take

$$\alpha_k := \frac{\theta}{\sqrt{k (\ln k)^{1+\lambda}}}, \quad \beta_k \equiv \beta \in (0, 2).$$

Remark: ROBUST STEPSIZES.

philipthomp@gmail.com
Theorem (Rate of convergence: unbounded case)

Given $\theta > 0$ and $\lambda > 0$ take

\[\alpha_k := \frac{\theta}{\sqrt{k \ln k^{1+\lambda}}}, \quad \beta_k \equiv \beta \in (0, 2). \]

Then a.s.-asymptotic convergence holds

Remark: ROBUST STEPSIZES.
Theorem (Rate of convergence: unbounded case)

Given $\theta > 0$ and $\lambda > 0$ take

$$\alpha_k := \frac{\theta}{\sqrt{k (\ln k)^{1+\lambda}}}, \quad \beta_k \equiv \beta \in (0, 2).$$

Then a.s.-asymptotic convergence holds and

$$\mathbb{E} \left[d(\hat{x}^k, X^*) \right] \lesssim O(1) \max\{\theta, \theta^{-1}\} C \cdot \frac{(\ln k)^{1+\lambda}}{\sqrt{k}},$$

$$C := \inf_{x^* \in X^*} \left\{ B(x^*)^2 \cdot \max_{0 \leq k \leq k_0} \mathbb{E} \left[\|x^k - x^*\|^2 \right] \right\}.$$

Remark: ROBUST STEPSIZES.
Theorem (Rate of convergence: bounded case)

Suppose bounded operator or compact X_0 with same stepsize as before. Then a.s.-asymptotic-convergence holds with

$$
\mathbb{E} \left[d(\hat{x}^k, X^*) \right] \lesssim O(1) \max\{\theta, \theta^{-1}\} d(x^0, X^*)^2 \cdot \frac{(\ln k)^{\frac{1+\lambda}{2}}}{\sqrt{k}},
$$

or

$$
\mathbb{E} \left[d(\hat{x}^k_{\lceil rk \rceil}, X^*) \right] \lesssim O(1) \max\{\theta, \theta^{-1}\} \text{diam}(X_0)^2 \cdot \frac{(\ln k)^{\frac{1+\lambda}{2}}}{\sqrt{k}},
$$

respectively.
Theorem (Rate of convergence: bounded case)

Suppose bounded operator or compact \(X_0 \) with same stepsize as before. Then a.s.-asymptotic-convergence holds with

\[
\mathbb{E} \left[d(\hat{x}^k, X^*) \right] \lesssim \mathcal{O}(1) \max\{\theta, \theta^{-1}\} \, d(x^0, X^*)^2 \cdot \frac{(\ln k)^{1+\lambda}}{\sqrt{k}},
\]

or

\[
\mathbb{E} \left[d(\hat{x}^k_{\lfloor rk \rfloor}, X^*) \right] \lesssim \mathcal{O}(1) \max\{\theta, \theta^{-1}\} \, \text{diam}(X_0)^2 \cdot \frac{(\ln k)^{1+\lambda}}{\sqrt{k}},
\]

respectively.

- ROBUST STEPSIZES.
Corollary (Convergence rates for larger stepsizes: bounded case)

Suppose compact case. Then

- **Constant stepsize:** if $\alpha_k \equiv \theta \alpha$,

$$
\mathbb{E} \left[d(\hat{x}^k, X^*) \right] \lesssim \frac{1}{k} + O(\alpha).
$$
Corollary (Convergence rates for larger stepsizes: bounded case)

Suppose compact case. Then

- **Constant stepsize**: if \(\alpha_k \equiv \theta \alpha \),
 \[
 \mathbb{E} \left[d(\hat{x}^k, X^*) \right] \lesssim \frac{1}{k} + O(\alpha).
 \]

- If \(\alpha_k := \frac{\theta}{\sqrt{k}} \), then
 \[
 \mathbb{E} \left[d(\hat{x}^k_{rk}, X^*) \right] \lesssim \frac{1}{\sqrt{k}}.
 \]
Corollary (An auxiliary simpler optimization problem)

Suppose that T is (L, δ)-Hölder continuous and

1. T is unbounded and $\delta = 1$ or,
2. T is bounded or X_0 is compact.

Then, there exists $V > 0$, such that for all $k \geq 2$ with

$$k \sim \left(\frac{VL^\delta}{\rho^{1+\delta}} \right)^2,$$

we have

$$\argmin_{x \in X} \left\langle \mathbb{E} \left[F(\xi, \hat{x}^k) \right], x \right\rangle \subset X^*.$$
Case 2: Plain monotone SVI & $\epsilon^k > 0$
Case 2: Plain monotone SVI & $\varepsilon^k > 0$

Cartesian structure: m agents,

- $\mathbb{R}^n = \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_m}$,
- $n = n_1 + \cdots + n_m$
- $\langle x, y \rangle = \sum_{j=1}^{m} \langle x_j, y_j \rangle$,
- $X = X^1 \times \cdots \times X^m$,
- $F = (F_1, \ldots, F_m)$,

(DISTRIBUTED SOLUTION)
Case 2: Plain monotone SVI & $\epsilon^k > 0$

Cartesian structure: m agents,

- $\mathbb{R}^n = \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_m}$,
- $n = n_1 + \cdots + n_m$
- $\langle x, y \rangle = \sum_{j=1}^{m} \langle x_j, y_j \rangle$
- $X = X^1 \times \cdots \times X^m$,
- $F = (F_1, \ldots, F_m)$

(DISTRIBUTED SOLUTION)

Constraint structure: given $j \in [m]$,

- $X^j = X^j_0 \cap \left(\cap_{i \in I_j} X^j_i \right)$
- for all $i \in I_j$, $X^j_i = \{ x \in \mathbb{R}^n : g_i(j|x) \leq 0 \}$
- X^j_0 has easy projections,
- for every $i \in I_j$, subgradients of $g_i^+(j|\cdot)$ are easily computable,
- $\{ \partial g_i^+(j|\cdot) : i \in I_j \}$ is uniformly bounded over X^j_0.
Case 2: **Plain monotone SVI & $\epsilon^k > 0$**

Algorithm (Incremental constraint projection method: distributed case)

$$
\begin{align*}
y_j^k &= \prod_{x_{0}^j} \left[x_j^k - \alpha_{k,j} \left(F_j(v^k, x^k) + \epsilon_{k,j} x_j^k \right) \right], \\
x_j^{k+1} &= \prod_{x_{0}^j} \left[y_j^k - \beta_{k,j} \frac{g_{\omega_{k,j}}^+(j|y_j^k)}{\|d_j^k\|^2} d_j^k \right],
\end{align*}
$$

where $d_j^k \in \partial g_{\omega_{k,j}}^+(j|y_j^k) - \{0\}$ if $g_{\omega_{k,j}}(j|y_j^k) > 0$.

OBS: Includes the case of agents with **different stepsizes** and regularization parameters.
Case 2: **Plain monotone SVI & $\epsilon^k > 0$**

Typical example: soft constraints with easy *projection*:

Algorithm

\[
y_j^k = x_j^k - \alpha_{k,j} \left(F_j(\xi^k, x^k) + \epsilon_{k,j} x_j^k \right),
\]

\[
x_j^{k+1} = \Pi_{x_j^0} \left[y_j^k - \beta_{k,j} \left(y_j^k - \Pi_{\omega_{k,j}}(y_j^k) \right) \right].
\]
Case 2: Plain monotone SVI & $\epsilon^k > 0$

Same assumptions as before, but

- T is **monotone** and Lipschitz.
Case 2: Plain monotone SVI & $\epsilon^k > 0$

Same assumptions as before, but

- T is **monotone** and Lipschitz.
- **Regularization** parameters: $\lim_{k \to \infty} \epsilon_k,j = 0$.
Case 2: Plain monotone SVI & $\epsilon^k > 0$

Same assumptions as before, but

- T is **monotone** and Lipschitz.
- **Regularization** parameters: $\lim_{k \to \infty} \epsilon_{k,j} = 0$.
- **Partial Coordination** between stepsize and regularization, including:

$$\sum_{k=0}^{\infty} \frac{(\alpha_{k,\max} - \alpha_{k,\min})^2}{\alpha_{k,\min} \epsilon_{k,\min}} < \infty.$$
Case 2: Plain monotone SVI & $\epsilon^k > 0$

Same assumptions as before, but

- T is **monotone** and Lipschitz.
- **Regularization** parameters: $\lim_{k \to \infty} \epsilon_{k,j} = 0$.
- **Partial Coordination** between stepsize and regularization, including:

$$\sum_{k=0}^{\infty} \frac{(\alpha_{k,\max} - \alpha_{k,\min})^2}{\alpha_{k,\min} \epsilon_{k,\min}} < \infty.$$

Typical: $\alpha_{k,j} = (k + C_j)^{-c}$ and $\epsilon_{k,j} = (k + D_j)^{-d}$ with $0 < c + d < 1$.

philipthomp@gmail.com

Workshop on AASS

IMPA 20 / 23
Theorem (Asymptotic convergence)

(i) If \(\limsup_{k \to \infty} \frac{\epsilon_{k,\text{max}}}{\epsilon_{k,\text{min}}} < \infty \), then a.s. \(\{x^k\} \) is bounded and all cluster points of \(\{x^k\} \) belong to \(X^* \).

(ii) If \(\limsup_{k \to \infty} \frac{\epsilon_{k,\text{max}}}{\epsilon_{k,\text{min}}} \leq 1 \), then a.s. \(\{x^k\} \) converges to the least-norm solution in \(X^* \).
Objective: remove **regularization**:

- better rate of convergence,
- less coordination between agents’ parameters (important in distributed solutions).
Incremental constraint SA-extragradient method

Objective: remove regularization:
- better rate of convergence,
- less coordination between agents’ parameters (important in distributed solutions).

Algorithm

\[
\begin{align*}
y_1^k & := x^k - \alpha_k F(\xi^k, x^k), \\
z^k & := \Pi_{\chi_0} \left[y_1^k - \beta_k \left(y_1^k - \Pi_{\omega_k} (y_1^k) \right) \right], \\
y_2^k & := x^k - \alpha_k F(\eta^k, z^k), \\
x^{k+1} & := \Pi_{\chi_0} \left[y_2^k - \beta_k \left(y_2^k - \Pi_{\omega_k} (y_2^k) \right) \right].
\end{align*}
\]
Assume:

- Hard constraint X_0 compact,
- same set of assumptions as before (no Lipschitz-continuity required).
Results

Assume:
- Hard constraint X_0 compact,
- same set of assumptions as before (no Lipschitz-continuity required).

Theorem (Rate of convergence)

For $\alpha_k := \frac{\theta}{\sqrt{k}}$,

- For the ergodic average $\bar{z}^k := \frac{\sum_{i=0}^{k} \alpha_i z^i}{\sum_{i=0}^{k} \alpha_i}$,

\[\mathbb{E}[G(\bar{z}^k)] \leq O(1) \max\{\theta, \theta^{-1}\} (M^2 + c) \frac{\ln k}{\sqrt{k}}. \]

- For Nesterov-type weights $\hat{z}^k := (1 - \theta_k)\hat{z}^k + \theta_k z^k$,

\[\mathbb{E}[G(\hat{z}^k)] \leq O(1) \max\{\theta, \theta^{-1}\} (M^2 + c) \frac{1}{\sqrt{k}}. \]

Remark: ROBUST STEPSIZES and no Lipschitz-continuity requirement.
Results

Corollary (Constant stepsize)

If \(\alpha_k \equiv \theta \alpha \) then

\[
E[G(\bar{z}^k)] \leq \frac{1}{k} + O(\alpha).
\]
THANK YOU!