AN OPTIMAL DIVIDEND PROBLEM

Max Reppen (joint work with Mete Soner and Jean-Charles Rochet)
March 31, 2016

ETH Zürich
PRELIMINARIES
Goal: Find the value of a cash flow under a liquidity constraint.
Cash flow rate:

\[\mu_t = \nu + \int_0^t k(\bar{\mu} - \mu_s) ds + \sigma \tilde{W}_t \]
Cash reserves dynamics:

Cash flow rate:

\[\mu_t = \nu + \int_0^t k(\bar{\mu} - \mu_s)ds + \tilde{\sigma}\tilde{W}_t \]

Cumulative dividends until time \(t \):

\[L_t \quad \text{RCLL, non-decreasing.} \]
Cash reserves dynamics

Cash flow rate:
\[\mu_t = \nu + \int_0^t k(\bar{\mu} - \mu_s)ds + \tilde{\sigma}W_t \]

Cumulative dividends until time \(t \):
\[L_t \quad \text{RCLL, non-decreasing.} \]

Cash reserves at time \(t \):
\[X_t = x + \int_0^t \mu_s ds + \sigma W_t - L_t \]
Cash flow rate:

\[
\mu_t = \nu + \int_0^t k(\bar{\mu} - \mu_s)ds + \bar{\sigma}\tilde{W}_t
\]

Cumulative dividends until time \(t \):

\(L_t \) \quad \text{RCLL, non-decreasing.}

Cash reserves at time \(t \):

\[
X_t = x + \int_0^t \mu_s ds + \sigma W_t - L_t
\]

- Deterministic: \(\sigma = \bar{\sigma} = 0 \).
- Semi-deterministic: \(\sigma = 0 \) or \(\bar{\sigma} = 0 \).
We assign the firm value the value of its future, discounted dividends.
We assign the firm value the value of its future, discounted dividends. That is,

\[V(x, \nu) = \sup_L E \left[\int_0^{\theta(L)} e^{-rt} dL_t \right], \]

where \(\theta(L) \) is the time the cash reserves reach 0 under the dividend policy \(L \) (bankruptcy time).
DETERMINISTIC CASE
If the cash flow μ_t is positive,
If the cash flow μ_t is positive,

1. bankruptcy will never happen
If the cash flow μ_t is positive,

1. bankruptcy will never happen
2. and it is suboptimal to keep reserves as a buffer against bankruptcy.
If the cash flow μ_t is positive,

1. bankruptcy will never happen
2. and it is suboptimal to keep reserves as a buffer against bankruptcy.
3. The value is therefore x plus the discounted value of future cash flow.
If the cash flow μ_t is positive,

1. bankruptcy will never happen
2. and it is suboptimal to keep reserves as a buffer against bankruptcy.
3. The value is therefore x plus the discounted value of future cash flow.

Since everything is explicit, we find that

$$\mu_t = \bar{\mu} + (\nu - \bar{\mu}) e^{-kt}$$

and

$$V(x, \nu) = x + \frac{\bar{\mu}}{r} + \frac{\nu - \bar{\mu}}{r + k}, \quad \nu \geq 0.$$
The cash flow rate will eventually turn positive... but
The cash flow rate will eventually turn positive... but

Can the firm survive?
The cash flow rate will eventually turn positive... but

Can the firm survive?

Time to reach positive cash flow ($\mu_t = 0$): $\tau_0(\nu) = \frac{\ln \frac{\bar{\mu}}{\bar{\mu} - \nu}}{-k}$.
The cash flow rate will eventually turn positive... **but**

Can the firm survive?

Time to reach positive cash flow ($\mu_t = 0$): $\tau_0(\nu) = \frac{\ln\frac{\bar{\mu}}{\bar{\mu}-\nu}}{-k}$.

Cash needed to survive: $-\int_0^{\tau_0} \mu_t dt = -\bar{\mu}\tau_0 - \frac{\nu}{k} =: x_b(\nu)$.
The cash flow rate will eventually turn positive... but

Can the firm survive?

Time to reach positive cash flow ($\mu_t = 0$): $\tau_0(\nu) = \frac{\ln \frac{\bar{\mu}}{\bar{\mu} - \nu}}{-k}$.

Cash needed to survive: $- \int_0^{\tau_0} \mu_t dt = -\bar{\mu} \tau_0 - \frac{\nu}{k} =: x_b(\nu)$.

If x is lower, bankruptcy will come before positive cash flows, otherwise we can wait for better times.

$$V(x, \nu) = x + \max \left\{ 0, e^{-r\tau_0(\nu)} \frac{k\bar{\mu}}{r(r + k)} - x_b(\nu) \right\}.$$
Below μ_{min} voluntary liquidation is optimal at all cash levels.
GENERALLY...
Also in the general case, there exists a μ^* behaving like μ_{min}:

$$V(x, \nu) \equiv x, \quad \text{for } \nu \leq \mu^*.$$
Also in the general case, there exists a μ^* behaving like μ_{min}: \[V(x, \nu) \equiv x, \quad \text{for } \nu \leq \mu^*. \]

Cute proof: First observe that \[V(x, \nu) \leq x + \sup_{\tau} E \left[\int_0^\tau e^{-rt} \mu_t \, dt \right] = x + V^R(\nu). \]

Then create supersolution V^R which attains zero.
What we know:

• Optimal policy exists.
• The value function is continuous.
• Dynamic programming holds.
• The dynamic programming equation has the comparison property (\approx unique solution).
Pay dividends
No dividends
THANK YOU!