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OTIM-rprBr
OTIM-PBR: main features m

General Goal: Introduce uncertainty in “PlanAb”,
Petrobras’ planning tool for managing its supply
chain (monthly decisions over half a year).

Specific goals:
* Representation of stochastic data, focusing on price and volume risk
(“statistical” block).

* Definition of a risk-neutral model and direct solution of a small
instance.

* Definition of a protocol for evaluating the results.

* The ultimate tool, for huge-scale problems, introducing a
decomposition method.

Academic team: IMPA/UFRJ/UERJ/UFSC (10
persons), and a guest from NTNU Norway.
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A Multidisciplinary Team m

* IMPA: Mikhail Solodov, Jorge Zubelli

* UFRJ: Laura Bahiense, Carolina Effio, José
Herskovits, Juan Pablo Luna

* UERJ: Welington de Oliveira

« UFSC: Marcelo Cordova, Erlon Finardi

* NTNU: Asgeir Tomasgard

* PETROBRAS:

* Paulo Ribas (Supply chain department)
* Flavia Schittine (OR department)
* Sergio Bruno (Corporate risk department)
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OTIM-PBR: main features m

General Goal: Introduce uncertainty in “PlanAb”,
Petrobras’ planning tool for managing its supply
chain (monthly decisions over half a year).

Specific goals:
* Representation of stochastic data, focusing on price and volume risk
(“statistical” block).

 Definition of a risk-neutral model and direct resolution of a small
instance.

* Definition of a protocol for evaluating the results.

* The ultimate tool, for huge-scale problems, introducing a
decomposition method.

Academic team: IMPA/UFRJ/UERJ/UFSC (10
persons), and a guest from NTNU Norway.




: OTIMepBr
Computational model w
Block 1: Statistical

Tool generating scenarios for:

" lInternational prices|(oil and derivatives, correlated)
* Oil volume arriving from the platforms each month.

Block 2: Optimization

Tool to determine the optimal policy for the whole supply
chain of the company for the next month. It includes:

* To which extent the company network (of production, transportation,
commercialization) can be simplified?

* How to handle uncertainty in the optimization problem (inand
In the right hand side)

Problem solution via decomposition method (huge scale problem
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: OTIMepBr
Computational model w
Block 1: Statistical

Tool generating scenarios for:
" International prices (oil and derivatives, correlated)
* Oil volume arriving from the platforms each month.

Technique: multivariate model + Kalman filter + SDP NLP solver, assessed
by backtesting (Juan Pablo Luna).

Block 2: Optimization

Tool to determine the optimal policy for the whole supply
chain of the company for the next month. It includes:
* To which extent the company network (of production, transportation,

commercialization) can be simplified?

* How to handle uncertainty in the optimization problem (in the cost and
In the right hand side)

* Problem solution via decomposition method (huge scale problem




The setting

E.u Petroleyin
i Explogation

[
Petroleum
Supply .-

Source: M. Maia,
Petrobras

OTIMepBr

Wide variety of comercial, industrial and
logistics operations occur over the
midstream segment

N

Strong dependence among the
operations and some gains can only be
estimated by considering the whole
supply chain

\

Planning this segment is crucial to
achieve the success of all operations.




OTIMepBr

Brazil's supply chain

/C'rude Oil: \

A - Imports (1)
e - Exports (3)
oy O - Production (5)
: N - Oil Products:
Tehos -%“ - :L.-:.:.:. s 2 - ImpOI’tS (2)
o e sz = EXpOI'tS ( 4)

- Market Selling (6)

anribciiel

= |~ 200 different crude oils

Aganbing

~ 50 different oil products

= i 10 basins of oil production
23000 km pipelines
P e >100 platforms
> 40 terminals in Brazil
- . 8 >200 terminals abroad
ource. vl. vala, o 12 refineries
Petrobras y ¥ o \ /




Production flow
PlanAb

Simplified Network

OTIMepBr

INTERNATIONAL MARKET (buy)
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Production flow OTIMeer
PlanAb UNCERTAINTY

Simplified Network
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Some comments io%

* Uncertainty increases the (already huge)
size of the linear program (LP).

* Mounting the data for the deterministic model
takes longer than solving the LP.

* Solving an aggregate model is not an option:
keeping the level of detail of the deterministic
model is important for the company.



Some comments io%

* Uncertainty increases the (already huge)
size of the linear program (LP).

* Mounting the data for the deterministic model
takes longer than solving the LP.

* Solving an aggregate model is not an option:
keeping the level of detail of the deterministic
model is important for the company.

BUT

* Changing CPLEX stopping tolerance from default
107° to 107 provides a good trade-off between
accuracy and solving time:

mean relative error on variables 0,007%
solving times reduced in 18,56%



Statistical Block

O TIMprer ;




Sources of uncertainty

OTIMpBr
Calibration of price models w

1. Oil, gasoline and diesel international prices

" The model is a process defined by stochastic
differential equations.

" To determine the parameters defining the model
(mean, trend, volatility, correlations) we maximize
the proximity to historical data (likelihood) using a
Kalman filter.

* Small scale non-convex optimization problem,
solved by a nonlinear programming method of
Interior feasible directions. Master's thesis

supervised by J.P. Luna and J. Herskovits.
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Sources of uncertainty

OTIMpBr
Calibration of price models m

" There are several stochastic processes for
modelling commodity prices.

" They should include important oil price features
such as picks, seasonality, mean reversion, etc.

" The models are completely described by certain
parameters that can be time dependent (mean,
trend, volatility, correlations) and whose values
need to be estimated (calibration).

16



Sources of uncertainty
Calibration of price models

OTIM-prBR :
* Agenda:

1. Choose a model suitable for our purposes.

2. Calibrate the model for fitting the available
historical data.

3. Generate future price scenarios.

17



Sources of uncertainty
Calibration of price models

= Calibration:

OTIM-rBr :

" To determine the parameters defining the model
we maximize the proximity to historical data
(likelihood).

" To compute the likelihood requires computing
the joint probability density function that may
not be available in closed form but can be
estimated through Kalman Filters.

* The likelihood function is nonconvex.

18



OTIMepBR
Schwartz - Smith Model m
log(St) — a%t bgt
dy, = —diag(K)x,dt +AXdW*

d&, = udt +A5de

= (a7b7K7A757A5715”u5,,ug,f5%)
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OTIM-rBr :

Future Contract Price
F'r =E"[S7|-F]

log(F'r) =a|e T =yi| + b&/ +Al(e,T)

A'(r,T) = b(mi—2g)(T - )]_a[)zi(l_eki(“))]

1

TAX||2 TAXp e,
1 ((1 B —2k;-(T—r)) lae; A% +2(1 _e—ks(T—f))abef A*pHeA® €l+

€ 2k; k;
el AS|A(T — 1))

Note the nonlinear relations between
unknown variables
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Discretization of Schwartz - OTIMrsr

Smith Model
L] =m | [E]15) m
E ”xz] , %] _ [diag(e"”)xn]

fg’fi+1 &fi - ‘LLAI
I X diag ((13;@:) ) AxﬁxiAéT_
COV(W;I-) = . T T .. 1— e kil ;
AS(p2E)TAX diag (( 2 )‘) Arzé
= (ki+k;)At
g _ 1= oy
] ]
J ki + kj J

We need to keep positive definite this
nonlinear matrix o



Implementation Issues

OTIMerpBr 5

1.0bjective function (evaluated through a Kalman
Filter) is highly nonlinear.
2.0Dbjective function is defined only on certain
set. feasible optimization methods must be used
3.Nonlinear constraints must include the positive
definiteness of correlation matrices.
4.0ptimization methods are highly sensitive to
gradient values: an accurate implementation is

needed.

22



Numerical Results

OTIMerpBr 5

« WTI, HO, RBOB future contracts (with 1 to 4
months of maturity) from Energy Information
Administration-EIA.
(nttp://www.eia.gov/dnav/pet/xIs/IPET PR _FUT _
S1-D.xls)

 Time period considered 1081 days (10/06/2011
to 22/09/2015)

 Three decks (1081, 720 and 359 days) for
calibrating Schwartz — Smith.

23



OTIMerpBr 5

« We considered 1D and 3D Schwartz — Smith
processes.

Numerical Results

* The optimization problems were solved using FDIPA
and FDIPA-SDP non linear programming algorithms.

 Numerical approximations of likelihood functions
versus Its exact evaluation.

24
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RBOB 3D
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Conclusions

OTIMerpBr 5

* As expected, considering together all three assets
produces better simulations of prices.

e Considering Schwartz - Smith models for more than
one dimension leads to more challenging numerical
problems that need sophisticated optimization
solvers (and expertise from the optimization
community).

28



Optimization Block

O TIMprer ;




Supply chain planning tool

Computational model

OTIMerpBr :
PlanAb

" Computational model for Petrobras supply chain

" Tool to determine the optimal planning for the whole
supply chain of the company for the next month.

" Currently PlanAb is a deterministic model that solves a

large scale linear programi ming,, ¢’z + q'y

s.t Ax —
Tx

A IA
| = 8 +

@ |8
=
m
=



Supply chain planning tool

Computational model

OTIM-rBr :

PlanAb (ming, ¢'z + q'y
st Ax = b Availability of oil
: Tr + Wy =h volume from the
< =T plataforms
y<y =Yy
k Y =19; 1€ ly

" Variable x represents commercial transactions such as
iImports along the planning horizon (four months)

" Variable y represents exports and logistic operations
such transportation and refinery oil/derivative

production
31



Derivatives

* Imports * Imports
* Exports * Exports

Logistic operations

EIEEES National market
* Type of consumed oll * Which refinery sends
* Type of produced products to which

derivatives marl<e?’,c2



Objective function
PlanAb model

Current model: 1:21yn &

OTIMerpBr ’

T.’I) + qu

Model (objective function)

Revenues
* Oil imports * Oil exports
* Derivative imports * Derivative exports
* Derivative storage * Derivative national sales
* Refining unit operations

Transportation

Prices are uncertain....

Proposed model: 31_1;1{151) ¢’z +E[g(&) y(©)]



Variables and constraints
PlanAb model

OTIM—PBRS
1. Oil and derivatives balance

" Includes all constraints involving the system balance
of oil/derivatives and how they flow in the network

* Balancing the derivatives in each terminal and
refinery T _
Tr + Wy =h

* Considering adjustments on the available olil for:
" Processing in the refineries
" Exportation, when the volume of oil arriving from the
platforms is larger than foreseen
y<y <y

: 34
yi =Yy 1€ ly



Sources of uncertainty

OTIM-rBr :

1. Oil, gasoline and diesel international prices
(about 30 in total)

Stochastic process: multivariate Schwartz-Smith
(Juan Pablo’s talk)

This uncertainty is represented by f

2. Avalilability of national oll
The ratio between the foreseen and observed

volumes follows a log-logistic probability
distribution

This uncertainty is represented by W
Two different sources of uncéttainty!



OTIM-rBr

«
PlanAb (min,, ¢'z + q'y
S s.t Az = b
* Deterministic Ty + Wy =h
< z< z T
How large are these y=4 =7 |
models? ! vi =Y 1€y
(min ¢’z + Elq(&)Ty(&, w)]
st Az — b
_ Tz + Wy(€, w) =h
" Stochastic 3 & u &
y<  ylw) <7
yi(§,w) = Yi(w) 1 Edy
3 VEc= w € ()




Deterministic PlanAb

(

min,, ¢'z + q'y

s.t Ax =}
Tex + Wy =h
. < L= =%
Implemented in AIMMS I
\ Yi = 1€ Iy

* LP’'s dimension:
= 2.3 million of variables

= 1.7 million of
constraints

‘j’i L

g
* Constraints’ matrix: "}
* Sparse (0,0002% non-
zero elements; ul

approximately 7.3 L
million of elements)

* Block-diagonal
structure

37



Deterministic PlanAb

OTIM—PBRS
* PlanAb LP:

* 2.3 million of variables, 1.7 million of constraints
* 7.3 million of non-zero elements (0.0002% - sparse)
" After presolve, size reduced approximately by 80%

Presolve
Model Variables | Constraints Non-zero time
elements

(sec)

Original 2.3 1 1 7 million | 7.3 million 0
million ' '

Conservative .
oresolve 044,000 307,000 2.88 million 2.7
Automatic .
oresolve 385,000 94,000 2.19 million 11.1
Aggressive 385,000 | 92,000 |2.14 million| 13.2
presolve

38



Deterministic PlanAb

OTIM-rBr :

" Solution of PlanAb by CPLEX solver, using
different methods

Method T'm(eSQLI;/IMS Memory
Primal simplex 600* 800 MB
Dual simplex 600* 800 MB
Network + Primal 600* 770 MB
Network + Dual 600* 820 MB
Barrier 180 1.25 GB
Sl 95 | 12508
P 95 | 12508
Sifting 600* 1.1 GB
Concurrent 352 1.8 GB

* Limit for time execution 39



Stochastic PlanAb

OTIM-rBr :

(min ¢’z + Elg(&) Ty(&, w)]
s.t Ax =b
Tz + Wy, w) =h
! < 4 = &
y<  yl§w) <7
VEER w € )

" Problem’s sizekdepends on the number of

scenarios of price and oil volume
* Number of variables is N times 2.3 million

* Number of constraints is N times 1.7 million
N = |Z| % |Q]

" Impossible to load the problem in a (powerful)
computer for N>10! (Memory issuas)



Two-stage decomposition

OTIM-rprBr
Stochastic PlanAb w

* Consider finitely many scenarios of price and oill
volume

" The problem is decomposed into two decision

levels ( min clx + E[Q(Ténw)]

x
{ st Ax = b
r<r <T

[ 2 T
- 111111 v Ll
Qg B8 Wy =h=Z
B y< y <Yy
\ Yi — (w') s € Iy




Two-stage decomposition

OTIM-rprBr
Stochastic PlanAb w

* Consider finitely many scenarios of price and oill
volume

" The problem is decomposed into two decision

levels (min ¢’z + XN, plQw; &, wi)]
§ st Ax = b
k r<z <2
i ( min (&) "y
Q(x: £, ) 4 st Wy = h-=-T
y< y <y
~.. Y, = gilw) tely




Two-stage decomposition

OTIM-rprBr
Stochastic PlanAb m

== [ a(x 0)

k+1

X

minc'x + a

st. Ax=Db k+1
e Q(x": &,

1=1,2,..k \
Q xk+1; £ o)
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OTIM-prBR
Cutting-plane approximatiorw

E[Q(X;E,0)]

44



OTIM-prBR
Cutting-plane approximatiorw

E[Q(x;S,m)]

45



OTIM-prBR
Cutting-plane approximatiorw

E[Q(x;S,m)]
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OTIM-prBR
Cutting-plane approximatiorw

E[Q(X;S,0)]
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OTIM-prBR
Cutting-plane approximatiorw

E[Q(x;&,®)]

48



|:> Q(x"} E,0)
min c'x + a / OTIM—PBR
" et Qx1 o) m
i =1,2,..k \
Q(x"! £,0)

cut’ |

<=

" N linear programming problems must be solved

for every first-stage decision ~ (ww g7
€ w)d St Wy =h-Tx
s ys ¥ =3
" Yi = gilw) i€lv

" This is a difficult task for large values of N

* We may solve the LPs in a approximate manner (inexact cuts)

" Use more efficient cutting-plane methods, such as Bundle

Methods: _ _ B _ _
Convex proximal bundle methods in depth: a unified analysis for inexact oracles.

Math. Programming, 2014, 148, 1-2, pp 241-277
W. de Oliveira, C Sagastizabal and C. Lemaréchal. 49



http://link.springer.com/article/10.1007/s10107-014-0809-6
http://link.springer.com/article/10.1007/s10107-014-0809-6
http://link.springer.com/article/10.1007/s10107-014-0809-6

PlanAb with chance-

OTIM-prBr
constraints m

* One manner to prevent the number of scv = |Z] « Q)
to be large is to handle the oil volume uncertainty
by chance constraints

\( min ¢g(¢) ( mljn a()'y
Yy ;
g} L h—T . st Wy = h-Tx
'F?-?w :< Q-’Jag =<
Azitw) <y Bic) ys Yy <y
/ ( i(""”) 1€ IL : E;LL < Y; < ?;LL 1 € IV

The bounds Ef"r‘, gt are such that IF’[E_{‘L <yw)<yl=1-p (pe(0,1))

Determining the bounds is not a difficult task, since the oll
volume of one platform is independent from the other

latforms
P 50



OTIM-rBr

Confiability curve
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PlanAb with chance-
constraints

Ji(w) ~ LL(B,0,7) = Plyi(w) < y] =

CTTIPMBR:s:

y—~)° .
W =7) -, for y >~
B+ (y —7)°

LL(53.9, 6.292, 41.7)

0035 |
003 - —
The constraint
y =100
0025 = —
is replaced by
f9.71=y =<118.1
002 —
(o'
2
0015 = =
0o = -
0,005 —
0 . —
40 B0 a0 100 120 140 160 180



Two-stage decomposition
Stochastic PlanAb + chance

0T1M—PBR=
constraint

" Consider finitely many scenarios of prices

" The problem is decomposed into two decision

levels ( N "
n}lm c'tz + Z.,;Zl pz[Q(T és’)]
{ st Ax =10
\ O T
with

h y< oy <7
ylh <y <yt iely

The bounds Ef"r‘, yt are such that P’[g_{‘f* <yiw)<ytl=1—p (pe(0,1))



OTIM-rBr

PlanAb + chance constraint

% 107

4.66 | _

L
4.64 - -

ey

-

-3
T
1

—(c'z+q'y) -

4.58 | 1

4=
o
1

Valor 6timo da fungio objetivo

4 48 | | | | | | | | |
0 0.1 0.2 (0.3 0.4 (0.5 0.6 0.7 0.8 (0.9 1

Probabilidade p

54



Conclusions

OTIMerpBr 5

= Stochastic PlanAb
" Price scenarios

* Oil volume

" can be modelled either by using scenarios or chance-
constraints

* follow independent log-logistic probability distributions

" The computational implementation of the
stochastic PlanAb model, with price scenarios
and chance-constraints for oil volumes is in
progress
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GOOd b%e OTIM-pBR
and thank you tor comingm




