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A generic inverse problem in imaging

The problem
Given data f , find the image information u which solves

f = T (u) + n

where T is a linear (or nonlinear) forward operator that models the
relation between u and f and n is a noise component.

If T has an unbounded inverse, the problem is ill-posed. Causes:
non-uniqueness, unstable inversion, noise, under sampling, . . .

The problem has to be regularised by adding a-priori information on
u. . .
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The variational approach..

For given data f we seek a regularised image u by minimising

J (u) = R(u)︸ ︷︷ ︸
Prior

+λ φ(T (u), f)︸ ︷︷ ︸
Data model

→ min
u
,

where
R(u) is the prior (regularising) term: modelling a-priori information
about the minimiser u in terms of regularity, e.g. R(u) =

∫
u2 dx

which results in u ∈ L2.
φ(T (u), f) is a generic distance function, the data fidelity term of
the functional which forces the minimiser u to obey (to a certain
extent) the forward model.
The parameter λ > 0 balances data model and prior.
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Modelling

The result heavily depends on the correct modelling. There are two
main degrees of freedom

Image model: R, prior, regularity of the image, basis function
representation, sparsity, . . .

Data model: T, φ, λ, physical understanding, statistics, heuristics,
. . .

. . . and in both cases, we can try to extract this information directly from
the data (experiments).
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What difference does it make? A
few examples . . .
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H1 versus TV regularisation

(a) original (b) noisy (c) R(u) = ‖∇u‖22

References: Rudin, Osher, Fatemi ’92; Chambolle, Lions ’97; Vese ’01, . . .
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H1 versus TV regularisation

(d) original (e) noisy (f) R(u) = TV (u)

References: Rudin, Osher, Fatemi ’92; Chambolle, Lions ’97; Vese ’01, . . .
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Weight λ between image and data model
Total variation denoising for Gaussian noise

with increasing regularisation (from left to right).
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Effect of regulariser is
complemented by effect of data

term . . .
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Choice of φ depends on data distribution
Gaussian Poisson Impulse

φ(Tu, f) = ‖Tu− f‖22 φ(Tu, f) =
∫
Tu− f log(Tu) dx φ(Tu, f) = ‖Tu− f‖1

MRI PET∗ sparse noise.

References: see recent works by Hohage and Werner ’12–

∗Data courtesy of EIMI, Münster.
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Optimise the choice of image and
data model
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State of the art in optimal model design

Using a-priori information such as the noise level, e.g. Morozov ’93; Engl, Hanke, Neubauer ’96;
. . . ; Baus, Nikolova, Steidl, JMIV ’14;

Adaptive parameter choice rules Hintermüller et al. ’11; Frick, Marnitz, Munk ’12–; Fornasier,
Naumova, Pereverzyev ’12–.

Regulariser: Chung, O’Leary et al. ’11– (optimal spectral filters); Sapiro et al. (dictionary
learning); Peyré, Fadili ’11; (learning sparsity priors).

Bayesian statistics, e.g. Hero et al. Dobigeon, Hero, Tourneret ’09; Park, Dobigeon, Hero ’14.

Statistical optimal design, e.g. Haber, Tenorio ’03; Huang, Haber, Horesh, Seo ’12; Ghattas et al.
08’–; Brune et al. ’14.

Examples of machine learning approaches: support vector machines, e.g. Tong, Chang ’01,
reproducible kernel Hilbert spaces Quang, Kang, Le ’10, Gaussian mixture models Pedemonte,
Bousse, Hutton, Arridge, Ourselin ’11, learning by shape priors Cremers, Rousson ’07, Schnoerr
et al., Markov random fields Tappen ’07; Domke ’12–, non-smooth priors and noise models De
Los Reyes, Schönlieb ’13; Kunisch, Pock ’13; Chung et al. ’14.
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Bilevel optimal reconstruction model
Assumptions
Training set of pairs (fk, uk), k = 1, . . . , N with

fk imperfect data
uk represent the ground truth

Determine optimal regulariser R, data model φ, and λ in
admissible set A

min
(R,φ,λ)∈A

∑
k

‖ūk − uk‖2L2(Ω)

subject to

ūk = arg min
u

{
R(u) +

∫
Ω

λ φ(Tu, fk) dx

}
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Learning from training sets
Image denoising training sets such as

Low resolution MRI scan

fk . . .

High resolution MRI scan

uk . . .

Simulated data from OASIS online database. Arridge, Kaipio, Kolehmainen, Schweiger, Somersalo, Tarvainen,

Vauhkonen ’06; Benning, Gladden, Holland, CBS,Valkonen ’14
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Learning from training sets
Image segmentation training sets such as
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Learning by optimisation in imaging

Some related contributions
Tappen et al. ’07, ’09; Domke ’11–: Markov Random Field models;
stochastic descent method
Lui, Lin, Zhang and Su ’09: optimal control approach, no analytical
justification; promising numerical results.
Horesh, Tenorio, Haber et al. ’03–: optimal design (also for `1
minimisation).
De los Reyes and Schönlieb ’13: results in function space;
derivative based optimization methods
Kunisch and Pock ’13: results for finite dimensional case;
semismooth Newton method
Chung et al. ’14: finite dimensional; bounded operator T .
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Learning in function space
Our goal: State and treat a nonsmooth optimization problem in function
space (stick to the physical model).

Infinite dimensional models more amenable to analysis of image
features, e.g. edges.

Lagrange multipliers and optimality condition.

Compute optimal weights λi with a fast derivative-based and mesh
independent optimisation method (second-order method);
resolution independent imaging Viola, Fitzgibbon, Cipolla ’12.

Incorporate information of large image databases.

Determination of the noise model present in the images.
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Selection of the data model with a
bilevel optimisation approach!
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Total variation (TV) denoising
Least squares minimization:

min
u

∫
Ω

|u− f |2 dx, (Gauss noise)

where f ∈ L2(Ω) is the noisy image

Include a total variation term in the minimization:

|Du|(Ω)

Minimization problem

min
u

(
|Du|(Ω) +

∫
Ω

λ (u− f)2 dx

)
, for λ > 0.
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TV denoising

min
u

(
|Du|(Ω) + λ

∫
Ω

φ(u, f) dx

)
,

with
|Du|(Ω) = TV (u) = sup

g∈C∞0 (Ω;R2),‖g‖∞≤1

∫
Ω

u ∇ · g dx

−→ the total variation of u in Ω

−→ λ > 0 positive parameter

−→ φ a suitable distance function called the data fidelity term.
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A generic TV denoising model

min
u

(
|Du|(Ω) +

d∑
i=1

λi

∫
Ω

φi(u, f) dx

)
.

where

−→ φi, i = 1, . . . , d, convex & differentiable functions in u,

−→ λi ≥ 0
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Choices for data fidelities φi’s

Gaussian noise: φ1(u, f) = (u− f)2, ROF,Chambolle & Lions, Vese
1990’s, . . .
Impulse noise: φ2(u, f) = |u− f |, Aujol, Gousseau, Nikolova,
Osher, 2000’s, . . .
Poisson noise: φ3(u, f) = u− f log u, Burger et al. 2009-12
Other possible choices, e.g. multiplicative noise, Rician noise
Getreuer, Tong, Vese ’11, . . .

. . . weighted against each other with weights λi, which depend on the
amount and strength of noise of different distributions in f .

Combinations of noise models also in Nikolova, Wen Chan ’12
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Learning TV denoising model

Assumptions
Training set of pairs (fk, uk), k = 1, . . . , N with

fk noisy images
uk represent the ground truth

Determine the optimal weights λi
min

λi≥0, i=1,...,d

∑
k

‖ūk − uk‖2L2(Ω)

subject to: ūk = arg min
u

{
|Du|(Ω) +

d∑
i=1

λi

∫
Ω

φi(u, fk)

}
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Learning TV denoising model
Sobolev space setting

Determine the optimal weights λi
min

λi≥0, i=1,...,d

∑
k

‖ūk − uk‖2L2(Ω)

subject to: ūk = arg min
u

{
µ

2

∫
Ω

|∇u|2 +

∫
Ω

|∇u|+
d∑
i=1

λi

∫
Ω

φi(u, fk)

}

Equivalently, due to optimality conditions:

min
λi≥0, i=1,...,d

∑
k

‖ūk − uk‖2L2(Ω)

subject to: − µ∆ūk +
d∑
i=1

λi φ
′
i(ūk, fk) + ∂(|∇ūk|L1) 3 0.
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State of the art on optimality systems

Optimization of abstract variational inequalities
Barbu (1984, 1993), Tiba (1990), Bonnans-Tiba (1991), Wenbin-Rubio
(1991), Bonnans-Casas (1995), Bergounioux (1998).

Not sharp enough!

Renewed interest and improved results
Idea: exploit the special structure of TV term

∫
Ω |∇u| dx

DlRe (2011,2013), DlRe-Schönlieb (2013), Kunisch-Pock (2013),
Hintermüller et al. (2015), DlRe-Meyer (2015).
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Learning TV denoising model
Tailored regularization

min
λi≥0, i=1,...,d

∑
k

‖ūk − uk‖2L2(Ω)

subject to:− µ∆ūk +
d∑
i=1

λi φ
′
i(ūk, fk) +���

���
�: − div hγ(∇u)

∂(|∇ūk|L1) 3 0

Subdifferential of | · | Huber type function

X x√
x2+ε2���
�XXXX

x√
x2+ε2

Breaktrough thanks to the type of regularization!
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In this setting we can prove . . .

existence of an optimal solution.
differentiability of solution operator and derivation of sharp
optimality system.
convergence as Huber regularisation γ →∞ to sharp optimality
system for non-smooth problem.
Γ convergence of de-noising functional as ellipticity µ→ 0.

⇒ Consistency

. . . and in the numerics the parameters 0 < µ� 1 and γ � 1.

For a direct (unregularized) approach: see the talk of David Villacís
later this afternoon.
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Optimality system for the regularized problems
There exist Lagrange multipliers (pγ, ϕ) ∈ H1

0 (Ω)× Rd such that

−µ∆uγ − div hγ(Duγ) +
d∑
i=1

∫
Ω

λ̄i φ
′
i(uγ, f)v dx = 0, (1)

− µ∆pγ − div (h′γ(Duγ)∗Dpγ)

+
d∑
i=1

∫
Ω

λi φ
′′
i (uγ, f) pγ = −2(uγ − uk), (2)

ϕi =

∫
Ω

pγφ
′
i(uγ, f) dx, i = 1, ..., d, (3)

ϕi ≥ 0, λi ≥ 0, ϕiλi = 0, i = 1, ..., d. (4)

Characterization of the gradient
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Optimality system for bilevel problem
Passing to the limit as γ →∞ we are able to derive a sharp OS:

− µ∆ū− div q +
d∑
i=1

∫
Ω

λ̄i φ
′
i(ū) = 0, (1)

〈q,∇ū〉R2 = |∇ū| a.e. in Ω, (2)
µ(∇p,∇v) + 〈ξ,∇v〉(∇H1

0 (Ω))′

+
d∑
i=1

∫
Ω

λ̄i φ
′′
i (ū)p v dx = −2(ū− uk, v), ∀v ∈ H1

0 (Ω), (3)

〈ξ,∇p〉(∇H1
0 (Ω))′ ≥ 0, 〈ξ,∇ū〉(∇H1

0 (Ω))′ = 0, (4)

ϕi =

∫
Ω

pφ′i(ū, f) dx, i = 1, ..., d, (5)

ϕi ≥ 0, λi ≥ 0, ϕiλi = 0, i = 1, ..., d. (6)

C-stationarity

30 / 61



Optimality system for bilevel problem
Passing to the limit as γ →∞ we are able to derive a sharp OS:
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Numerical strategy

Solve
min

λi≥0, i=1,...,d
‖ūk − uk‖2L2(Ω)

subject to

−µ∆ū− div (hγ(∇ū)) +

d∑
i=1

λi φ
′
i(ū, f) = 0,

by quasi-Newton method (BFGS)
state equation is solved by Newton type algorithm (varies with φ)
evaluation of the gradient of the cost functional with adjoint information
Armijo line search with curvature verification.
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Optimal parameter for Gaussian model

min
λ≥0

‖u− uk‖2L2

subject to:

min
u≥0

{
µ

2
‖Du‖2L2 + ‖Du‖γ +

λ

2
‖u− fk‖2L2

}

Noise n ∈ N(0, 0.002) (optimal parameter λ∗ = 2980)
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Mixed Gauss & Poisson noise

min
λ≥0

1

2
‖u− uk‖2L2

subject to:

min
u≥0

{
µ

2
‖Du‖2L2 + ‖Du‖γ +

λ1

2
‖u− fk‖2L2 + λ2

∫
Ω

(u− fk log u) dx

}
.

Poisson noise and Gaussian noise n ∈ N(0, 0.001). Optimal parameters
λ∗1 = 1847.75 and λ∗2 = 73.45.
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Impulse noise

min
1

2
‖u− uk‖2L2

subject to:
min
u≥0

{µ
2
‖Du‖2L2 + ‖Du‖γ + λ‖u− fk‖γ

}

Impulse noise with 5% corrupted pixels; optimal parameter λ∗ = 45.88
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Optimality?
Quality measure

Original cost functional (left figure) ‖u− uk‖2L2

Signal to noise ratio (right figure)

SNR = 20× log10

(
‖uk‖L2

‖u− uk‖L2

)
,
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Learning noise by means of a database
In applications the noise level can be tuned
In MRI or PET the accuracy of the measurements depends on the
setup of the experiment. The training set can be provided by a series of
measurements using (simulated) phantoms.

Consider:

min
λi≥0, i=1,...,d

J(λ) :=
1

2N

N∑
k=1

∥∥uTVk − ũk
∥∥2

L2(Ω)
+
β

2

d∑
i=1

|λi|2

subject to the set of nonlinear constraints:

uTVk = argminu∈BV (Ω)

(
|Du|(Ω) +

d∑
i=1

λi

∫
Ω

φi(u, f̃k) dx

)
, k = 1, . . . , N

encoding the training set made up by the pairs (f̃k, ũk).
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The database†

One parameter estimation for noisy images corrupted with Gaussian
noise:

F̃ = . . .

Ũ = . . .

†OASIS online MRI database.
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Optimal results

Denoised versions with optimal parameter λ̂:

ÛTV = . . .

Numerical difficulties

Numerically, the problem is hardly tractable due to the large size of the
dictionary and the nonsmooth nature of the constraints which need to
be solved in each iteration of the optimisation algorithm.
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How we can compute it
efficiently for large databases?
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Batch sample methods

Ideally, we would like to sample randomly from the set of PDEs:
We want: to reduce the number of PDEs that need to be solved.
We don’t want: to perform a “poor" approximation of the original
problem.

Questions:
* Batch approximation of which operators?
* Size of the sample? Update?
* How to check the quality of sampling approach?
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BFGS with dynamic sampling
Modified version of algorithm by Byrd et al. (2012)

Algorithm 1 Dynamic sampling BFGS
1: Initialize: λ0, sample S0 with |S0| � N and model parameter θ, k = 0.
2: while BFGS not converging, k ≥ 0
3: sample |Sk| PDE constraints to solve
4: update BFGS matrix
5: compute search direction dk and steplength αk (Armijo)
6: define new iterate: λk+1 = λk + αkdk
7: choose a sample Sk+1 such that |Sk+1| = |Sk|
8: if appropriate condition on the quality of the approximation then
9: maintain the sample size |Sk+1| = |Sk|

10: else augment Sk such that 6: is verified.
11: end

Quality of the approximation→ variance in replacing ∇J with

∇JS =
1

2|S|
∑
k∈S

∥∥uTVk − ũk
∥∥2

L2(Ω)
+
β

2

d∑
i=1

|λi|2
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The condition on the batch gradient variance

For θ ∈ [0, 1):

‖∇JS(λ)−∇J(λ)‖2 ≤ θ ‖∇JS(λ)‖ 2 ⇒ d = −∇JS(λ) is a descent dir. (∗)
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The condition on the batch gradient variance

For θ ∈ [0, 1):

‖V ar(∇JS(λ))‖1 ≤ θ2 ‖∇JS(λ)‖ 2
2 ⇒ d = −∇JS(λ) is a descent dir. (∗)

Approximating V ar(∇JS(λ)) using the sample variance provides a
condition that needs to be checked for every random sample of size
S . . .

Is the condition (∗) satisfied?
Yes: keep the size S fixed and pick another random sample of size
S.
No: augment S such that the condition is fulfilled.
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Robustness and efficiency
- One parameter estimation: Gaussian noise N (0, 0.005).
- Database of variable size: 150× 150 images.
- Not-sampling vs. sampling technique.

N λ̂ λ̂S |S0| |Send| eff. eff.S diff.
10 3334.5 3417.7 2 3 140 84 2, 4%
20 3437.0 3473.2 4 4 240 120 1.0%
30 3436.5 3471.6 6 6 420 180 1.0%
40 3431.5 3350.6 8 9 560 272 2.3%
50 3425.8 3280.5 10 10 700 220 4.2%
60 3426.0 3301.3 12 12 840 264 3.6%
70 3419.7 3417.8 14 14 980 336 < 1%
80 3418.1 3283.5 16 16 1120 480 3, 9%
90 3416.6 3323.7 18 18 1260 648 2.7%
100 3413.6 3314.2 20 20 1400 520 2.9%

Parameters: β = 10−10, λ0 = 1000, θ = 0.5, |S0| = 20%N .
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Multiple noise case

- Two parameters: Gaussian noise N (0, 0.005) + impulse noise.
- Database of variable size: 150× 150 images.
- Not-sampling vs. sampling technique.

N λ̂1S λ̂2S |S0| |Send| eff. eff. Dyn.S. diff.
10 86.31 28.43 2 7 180 70 5.2%
20 90.61 26.96 4 6 920 180 5.3%
30 94.36 29.04 6 7 2100 314 5.6%
40 88.88 31.56 8 8 880 496 1.2%
50 88.92 29.81 10 10 2200 560 < 1%
60 89.64 28.36 12 12 1920 336 1.9%
70 86.09 28.09 14 14 2940 532 3.3%
80 87.68 29.97 16 16 3520 448 < 1%

Parameters: β = 0, λ10 = 10, λ20 = 10, θ = 0.5, |S0| = 20%N .
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A new initialisation of BFGS

Looking at the cost functional:

⇒ very flat ≈ “small” Hessian..
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A new initialisation of BFGS

This reflects in:
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Early oscillations;
Late superlinear convergence
(once B ≈ H);

=⇒ (standard) initialisation B0 = Id
is not ideal for our problem. . .
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Accuracy and sample size selection

The parameter θ ∈ [0, 1) affects accuracy and efficiency:
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Sample size condition:

‖V ar(∇JS(λ))‖1 ≤ θ2 ‖∇JS(λ)‖22

θ ↗: larger variances allowed,
smaller samples. Less
accuracy, but gain in efficiency.
θ ↘: smaller variances are
forced, bigger samples. More
accuracy, but efficiency suffers.
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Furthermore, we would like to include the BFGS matrix B in the
descent condition for faster convergence. . . Ongoing work.
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Bilevel optimization problem

Optimization problem in H1(Ω)

min
λ≥0

1

2
‖ū− uT‖2L2(Ω) +

β

2
‖λ‖2H1(Ω)

subject to:

ū = arg min
u∈V⊂H1(Ω)

{
µ

2

∫
Ω

|∇u|2 +

∫
Ω

|∇u|+ 1

2

∫
Ω

λ(x)(u− f)2

}
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Bilevel optimization problem

Second formulation

min
λ∈H1(Ω)

1

2

∫
Ω

|u− uT |2 dx+
β

2
‖λ‖2H1(Ω)

subject to:

−µ∆u− div (hγ(∇u)) + λ(x)(u− f) = 0,

λ(x) ≥ 0 in Ω.

PDE-constrained optimization problem with control constraints and
control in the coefficients.
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Ingredients for optimality conditions

There exists an optimal weight λ ∈ V ⊂ H1(Ω) solution of the
bilevel problem.

The solution operator λ→ u(λ) is Fréchet differentiable and its
derivative corresponds to the unique solution of a linearized PDE.
Moreover, if hγ is C2, then the solution operator is twice Fréchet
differentiable.

Consider the classical obstacle problem: Find λ ≥ 0 such that

a(λ, v − λ) ≥ (f, v − λ),∀v ≥ 0.

If the operator coefficients and the domain are regular enough, and
f ∈ L2(Ω), then λ ∈ H2(Ω).
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Optimality system
There exist Lagrange multipliers (p, ϕ) ∈ H1(Ω)× L2(Ω) such that

−µ∆u− div q + λ(u− f) = 0,

q = hγ(∇u)

−µ∆p− div ζ + λ p = −(u− uT ),

ζ = h′γ(∇u)∗∇p

−β∆λ+ βλ+ p(u− f) = ϕ

ϕ ≥ 0, λ ≥ 0, ϕλ = 0 a.e. in Ω.

Need an efficient large scale nonlinear complementarity solver
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Schwarz domain decomposition

−∆uk+1
1 = f in Ω1 −∆uk+1

2 = f in Ω2

uk+1
1 = uk2 on Γ1 uk+1

2 = uk1 on Γ1

uk+1
1 = 0 on ∂Ω1\Γ1 uk+1

2 = 0 on ∂Ω1\Γ1

Direct application of Schwarz methods to TV denoising problems (see,
e.g., Fornasier, Langer, Schönlieb (2009)).
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Optimized Schwarz

Modified transmission conditions:

−∆uk+1
1 = f in Ω1 −∆uk+1

2 = f in Ω2

(∂n + σ1)uk+1
1 = (∂n + σ1)uk2 on Γ1 (∂n + σ2)uk+1

2 = (∂n + σ2)uk1 on Γ1

uk+1
1 = 0 on ∂Ω1\Γ1 uk+1

2 = 0 on ∂Ω1\Γ1

Choice of weights according to high-low frequency Fourier analysis
(Gander (2006))

Analysis of KKT matrix variants:
 L+ ∇∗α(k)h′γ(∇uk)∇ 0 ∇∗hγ(∇uk)

∇∗α(k)h′′γ (∇uk)∇p∇+ F ′′(uk) L+∇∗α(k)h′γ(∇uk)∇ ∇∗h′γ(∇uk)∇p
h′γ(∇uk)∇p∇ hγ(∇uk)∇ 0

 .
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Semismooth Newton methods

The last two equations can be reformulated as:

−β∆λ+ βλ+ (u− f)p−max
(
0,−β∆λ+ (u− f)p

)
= 0

Semismooth Newton methods may be considered in each
subdomain.

Theorem
The semi-smooth Newton method applied to the optimality system
converges locally with superlinear convergence rate, provided that
‖y0 − y∗‖ is sufficiently small.
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Experiments

Original image and noisy image.
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Experiments

Resulting image and optimal weight.
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Experiments

Surface plot of optimal weight.
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Conclusions and outlook
Conclusions:

Optimise physical image and data model by bilevel optimisation.
Optimise-then-discretise: model in the continuum (resolution
independent);
Setup of efficient numerics for Gaussian, Poisson and impulse
noise, in case of small and large training sets;
Spatial dependent H1(Ω)-weight functions results in a large OS,
that can be efficiently solved by combining DD and SSN.

Outlook:
Alternative cost functionals. How to measure optimality?
More complex (realistic, mixed) noise models; sparse control on
parameters.
General linear operator T (inpainting, segmentation, . . . )
Optimising other elements in the model, e.g. regularisation
procedure, acquisition (sampling), inpainting procedure . . .
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Thank you very much for your attention!

J. C. De Los Reyes, and C.-B. Schönlieb, Image denoising: Learning noise
distribution via PDE-constrained optimisation, Inverse Problems and Imaging,
Vol. 7, 1183-1214, 2013.
L. Calatroni, J. C. De Los Reyes, and C.-B. Schönlieb, Dynamic sampling
schemes for optimal noise learning under multiple nonsmooth constraints, to
appear in IFIP TC7-2013 proceedings.

More information see: http://www.modemat.epn.edu.ec
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