Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions

Multistage Stochastic Programming: A Modeling and Algorithmic Perspective

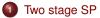
Bernardo K. Pagnoncelli

Business School Universidad Adolfo Ibáñez Santiago, Chile (Joint work with Tito Homem-de-Mello)

Analysis and Applications of Stochastic Systems IMPA, Brazil April 1st, 2016

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Outline				



- 2 Multistage SP
- 8 Risk aversion in MSSP
- A pension fund problem

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Outline				

- 2 Multistage SP
- 8 Risk aversion in MSSP
- A pension fund problem

5 Conclusions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Started in the 50's. Important early works: Dantzig ('55), Beale ('55), Walkup and Wets ('67).
- Increased interest in the last 20 years due to computational advances.
- Mature field: Kall and Wallace '94, Birge and Louveaux '97, Shapiro et al. '09.
- Applications: Finance, Energy, Transportation, Production Planning, Telecommunications, Forestry, ...

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Started in the 50's. Important early works: Dantzig ('55), Beale ('55), Walkup and Wets ('67).
- Increased interest in the last 20 years due to computational advances.
- Mature field: Kall and Wallace '94, Birge and Louveaux '97, Shapiro et al. '09.
- Applications: Finance, Energy, Transportation, Production Planning, Telecommunications, Forestry, ...

- Started in the 50's. Important early works: Dantzig ('55), Beale ('55), Walkup and Wets ('67).
- Increased interest in the last 20 years due to computational advances.
- Mature field: Kall and Wallace '94, Birge and Louveaux '97, Shapiro et al. '09.
- Applications: Finance, Energy, Transportation, Production Planning, Telecommunications, Forestry, ...

- Started in the 50's. Important early works: Dantzig ('55), Beale ('55), Walkup and Wets ('67).
- Increased interest in the last 20 years due to computational advances.
- Mature field: Kall and Wallace '94, Birge and Louveaux '97, Shapiro et al. '09.
- Applications: Finance, Energy, Transportation, Production Planning, Telecommunications, Forestry, ...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Two stage stochastic programming

decision x \rightsquigarrow realization $\xi \rightsquigarrow$ Recourse action y.

$$\min_{x\in X}\left\{cx+\mathbb{E}\left[Q(x,\xi)\right]\right\},\,$$

where

$$Q(x,\xi) = \min_{y\in Y} \left\{ qy | Tx + Wy \ge h \right\}.$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Minimize the expected cost is just one possible criterion.
- What if bad outcomes are extremely undesirable?
- In Finance, one would like to be protected against extreme losses
- In Energy, one would like to have a policy against severe droughts, or blackouts

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Minimize the expected cost is just one possible criterion.
- What if bad outcomes are extremely undesirable?
- In Finance, one would like to be protected against extreme losses
- In Energy, one would like to have a policy against severe droughts, or blackouts

- Minimize the expected cost is just one possible criterion.
- What if bad outcomes are extremely undesirable?
- In Finance, one would like to be protected against extreme losses
- In Energy, one would like to have a policy against severe droughts, or blackouts

- Minimize the expected cost is just one possible criterion.
- What if bad outcomes are extremely undesirable?
- In Finance, one would like to be protected against extreme losses
- In Energy, one would like to have a policy against severe droughts, or blackouts

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Conditional Value-at-Risk

• The Value-at-Risk:

$$\operatorname{VaR}_{\alpha}[X] = \inf\{x : \mathbb{P}(X \le x) \ge 1 - \alpha\}, \quad \alpha \in (0, 1).$$

• Formally, we define

$$CVaR_{\alpha}[X] = \inf_{t \in \mathbb{R}} \left\{ t + \frac{1}{1 - \alpha} \mathbb{E} \left[X - t \right]_{+} \right\} =$$

(Cont. case) = $\mathbb{E} \left[X \mid X > VaR_{\alpha} \right].$

Conditional Value-at-Risk

• The Value-at-Risk:

$$\operatorname{VaR}_{\alpha}[X] = \inf\{x : \mathbb{P}(X \le x) \ge 1 - \alpha\}, \quad \alpha \in (0, 1).$$

• Formally, we define

$$CVaR_{\alpha}[X] = \inf_{t \in \mathbb{R}} \left\{ t + \frac{1}{1 - \alpha} \mathbb{E} \left[X - t \right]_{+} \right\} =$$

(Cont. case) = $\mathbb{E} \left[X \mid X > VaR_{\alpha} \right].$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト の Q (2)

Coherent risk measures

1)
$$\rho(X + c) = \rho(X) + c.$$

2)
$$X \leq Y \Rightarrow \rho(X) \leq \rho(Y)$$
.

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4)
$$\rho(X + Y) \le \rho(X) + \rho(Y)$$
.

A risk measure that satisfies axioms 1) – 4) is called coherent.

1)
$$\rho(X + c) = \rho(X) + c$$
.

2) $X \leq Y \Rightarrow \rho(X) \leq \rho(Y)$.

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4)
$$\rho(X + Y) \le \rho(X) + \rho(Y)$$
.

A risk measure that satisfies axioms 1) - 4 is called *coherent*.

1)
$$\rho(X + c) = \rho(X) + c$$
.

2)
$$X \leq Y \Rightarrow \rho(X) \leq \rho(Y)$$
.

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4) $\rho(X + Y) \le \rho(X) + \rho(Y)$.

A risk measure that satisfies axioms 1) - 4 is called *coherent*.

▲□▶▲□▶▲目▶▲目▶ 目 のへの

1)
$$\rho(X + c) = \rho(X) + c$$
.

2)
$$X \leq Y \Rightarrow \rho(X) \leq \rho(Y)$$
.

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4)
$$\rho(X + Y) \le \rho(X) + \rho(Y).$$

A risk measure that satisfies axioms 1) - 4 is called *coherent*.

▲□▶▲□▶▲□▶▲□▶ □ のへで

1)
$$\rho(X + c) = \rho(X) + c$$
.

2)
$$X \leq Y \Rightarrow \rho(X) \leq \rho(Y)$$
.

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4)
$$\rho(X + Y) \le \rho(X) + \rho(Y)$$
.

A risk measure that satisfies axioms 1) - 4 is called *coherent*.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Risk aversion in two stage SP

• In the two stage context risk aversion is well understood

 Stochastic Dominance: Dentcheva & Ruszczyński '03 '04, Hu & Homem-de-Mello, Roman '06, ...

- Risk measures: Rockafellar & Uryasev '00, Schulz & Tiedemann '03 '06, Ahmed '06, Miller and Ruszczyński '11, Noyan '12, ...
- Chapter 6 of "Lectures on Stochastic Programming: Modeling and Theory" by Shapiro et al. summarizes the topic.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Risk aversion in two stage SP

- In the two stage context risk aversion is well understood
- Stochastic Dominance: Dentcheva & Ruszczyński '03 '04, Hu & Homem-de-Mello, Roman '06, ...
- Risk measures: Rockafellar & Uryasev '00, Schulz & Tiedemann '03 '06, Ahmed '06, Miller and Ruszczyński '11, Noyan '12, ...
- Chapter 6 of "Lectures on Stochastic Programming: Modeling and Theory" by Shapiro et al. summarizes the topic.

Risk aversion in two stage SP

- In the two stage context risk aversion is well understood
- Stochastic Dominance: Dentcheva & Ruszczyński '03 '04, Hu & Homem-de-Mello, Roman '06, ...
- Risk measures: Rockafellar & Uryasev '00, Schulz & Tiedemann '03 '06, Ahmed '06, Miller and Ruszczyński '11, Noyan '12, ...
- Chapter 6 of "Lectures on Stochastic Programming: Modeling and Theory" by Shapiro et al. summarizes the topic.

Risk aversion in two stage SP

- In the two stage context risk aversion is well understood
- Stochastic Dominance: Dentcheva & Ruszczyński '03 '04, Hu & Homem-de-Mello, Roman '06, ...
- Risk measures: Rockafellar & Uryasev '00, Schulz & Tiedemann '03 '06, Ahmed '06, Miller and Ruszczyński '11, Noyan '12, ...
- Chapter 6 of "Lectures on Stochastic Programming: Modeling and Theory" by Shapiro et al. summarizes the topic.

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Outline				

- 2 Multistage SP
- 8 Risk aversion in MSSP
- A pension fund problem

5 Conclusions

▲ロト▲圖ト▲国ト▲国ト ヨーのへで

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Multistage stochastic programming

• Stochastic Dynamic Programming. Or ...

- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Multistage stochastic programming

• Stochastic Dynamic Programming. Or ...

- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

Multistage stochastic programming

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

Multistage stochastic programming

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

Multistage stochastic programming

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

Multistage stochastic programming

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

Multistage stochastic programming

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

Examples

Many problems can be framed as multistage problems:

- Hydroelectric energy planning: How much energy to produce/store in each month, given that water inflows are uncertain?
- Portfolio selection: How much money should I put on each investment every month, knowing that future returns are uncertain?
- Revenue management: Which products (e.g., fare classes) should be made available at each time period, given that future demand is uncertain?

うつん 川 エー・エー・ エー・ ひゃう

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Examples				

Many problems can be framed as multistage problems:

- Hydroelectric energy planning: How much energy to produce/store in each month, given that water inflows are uncertain?
- Portfolio selection: How much money should I put on each investment every month, knowing that future returns are uncertain?
- Revenue management: Which products (e.g., fare classes) should be made available at each time period, given that future demand is uncertain?

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Examples

Many problems can be framed as multistage problems:

- Hydroelectric energy planning: How much energy to produce/store in each month, given that water inflows are uncertain?
- Portfolio selection: How much money should I put on each investment every month, knowing that future returns are uncertain?
- Revenue management: Which products (e.g., fare classes) should be made available at each time period, given that future demand is uncertain?

▲□▶▲□▶▲□▶▲□▶ □ のQで

Algorithms

- Popular algorithms include the Nested L-Shaped (Birge '85), SDDP (Pereira and Pinto '91), Progressive Hedging (Rockafellar and Wets '91), SAA (Shapiro '03, '06), ADP (Powell '07).
- The effectiveness of each algorithm is highly problem dependent.
- General purpose algorithms are not readily applicable.

Algorithms

- Popular algorithms include the Nested L-Shaped (Birge '85), SDDP (Pereira and Pinto '91), Progressive Hedging (Rockafellar and Wets '91), SAA (Shapiro '03, '06), ADP (Powell '07).
- The effectiveness of each algorithm is highly problem dependent.
- General purpose algorithms are not readily applicable.

Algorithms

- Popular algorithms include the Nested L-Shaped (Birge '85), SDDP (Pereira and Pinto '91), Progressive Hedging (Rockafellar and Wets '91), SAA (Shapiro '03, '06), ADP (Powell '07).
- The effectiveness of each algorithm is highly problem dependent.
- General purpose algorithms are not readily applicable.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

General formulation of MSSP with random RHS

Assume $\{\xi_1, \ldots, \xi_T\}$ is a stochastic process, ξ_0 is a constant.

$$\max \mathbb{E}_{\xi_1, \dots, \xi_T} \left[c'_0 x_0 + c'_1 x_1 + \dots + c'_T x_T \right]$$

subject to [MSSP]

$$A_0 x_0 \leq \xi_0$$

$$A_1 x_1 \leq \xi_1 - B_0 x_0$$

$$\vdots$$

$$A_T x_T \leq \xi_T - \sum_{m=0}^{T-1} B_m x_m,$$

 x_t depends only on ξ_0, \ldots, ξ_t .

Recursive formulation of MSSP

 $\begin{array}{l} \max \ c_0^{\mathsf{T}} x_0 + \mathbb{E}_{\xi_1} \left[\mathcal{Q}_1(x_0,\xi_1) \right] \\ \text{subject to} \\ A_0 x_0 \ \leq \xi_0. \end{array} \tag{MSSP-R}$

The function Q_1 is defined recursively as

$$Q_t(x_0,...,x_{t-1},\xi_1,...,\xi_t) = \max_{x_t} c_t^T x_t + \mathbb{E}_{\xi_{t+1}} [Q_{t+1}(x_0,...,x_t,\xi_1,...,\xi_{t+1}) | \xi_1,...,\xi_t]$$

subject to

$$A_t x_t \leq \xi_t - \sum_{m=0}^{t-1} B_m x_m,$$

 $t = 1, \ldots, T$. Also, $Q_{T+1} \equiv 0$.

Τw	S		е	s	

Outline

Two stage SP

8 Risk aversion in MSSP

4 A pension fund problem

5 Conclusions

- ◆□▶ ◆課▶ ◆注▶ ◆注▶ - 注:のへぐ

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Risk averse multistage stochastic programming

• There is no obvious way of formulating the problem

• Some issues that are absent (or not so relevant) in two-stage case complicate matters in the multistage setting

- Our goal is to discuss one of those issues (consistency), and to understand some possible frameworks
- We focus on a specific formulation, and apply our findings to a pension fund problem

Risk averse multistage stochastic programming

- There is no obvious way of formulating the problem
- Some issues that are absent (or not so relevant) in two-stage case complicate matters in the multistage setting
- Our goal is to discuss one of those issues (consistency), and to understand some possible frameworks
- We focus on a specific formulation, and apply our findings to a pension fund problem

Risk averse multistage stochastic programming

- There is no obvious way of formulating the problem
- Some issues that are absent (or not so relevant) in two-stage case complicate matters in the multistage setting
- Our goal is to discuss one of those issues (consistency), and to understand some possible frameworks
- We focus on a specific formulation, and apply our findings to a pension fund problem

Risk averse multistage stochastic programming

- There is no obvious way of formulating the problem
- Some issues that are absent (or not so relevant) in two-stage case complicate matters in the multistage setting
- Our goal is to discuss one of those issues (consistency), and to understand some possible frameworks
- We focus on a specific formulation, and apply our findings to a pension fund problem

In our context, multi-period risk measures are those applied to real-valued functions of the stochastic process $\{\xi_t\}_{t=1}^T$. To simplify notation, let

$$Z_t := f_t(x_t, \xi_t), Z := (Z_1, \ldots, Z_T).$$

$$\min_{\substack{x_1,\ldots,x_T}} \mathbb{F}\left(f_1(x_1,\xi_1),\ldots,f_T(x_T,\xi_T)\right)$$
s.t. $x_t \in \mathcal{X}_t\left(x_{[t-1]},\xi_{[t]}\right), \quad t = 1,\ldots,T.$

$$\mathbb{F}^{Z_1,\ldots,Z_t}(Z)(\omega):= \tilde{\mathbb{F}}(G_{Z\mid Z_1=z_1,\ldots,Z_t=z_t}).$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

In our context, multi-period risk measures are those applied to real-valued functions of the stochastic process $\{\xi_t\}_{t=1}^T$. To simplify notation, let

$$Z_t := f_t(x_t, \xi_t), Z := (Z_1, \ldots, Z_T).$$

The multi-period risk measure is denoted by $\mathbb{F}(Z)$.

$$\min_{\substack{x_1,\ldots,x_T}} \mathbb{E} \left(f_1(x_1,\xi_1),\ldots,f_T(x_T,\xi_T) \right)$$

s.t. $x_t \in \mathcal{X}_t \left(x_{[t-1]},\xi_{[t]} \right), \quad t = 1,\ldots,T.$

$$\mathbb{F}^{Z_1,\ldots,Z_t}(Z)(\omega):= \tilde{\mathbb{F}}(G_{Z\mid Z_1=z_1,\ldots,Z_t=z_t}).$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

In our context, multi-period risk measures are those applied to real-valued functions of the stochastic process $\{\xi_t\}_{t=1}^T$. To simplify notation, let

$$Z_t := f_t(x_t, \xi_t), Z := (Z_1, \ldots, Z_T).$$

The multi-period risk measure is denoted by $\mathbb{F}(Z)$.

$$\min_{\substack{x_1,\ldots,x_T}} \mathbb{F} \left(f_1(x_1,\xi_1),\ldots,f_T(x_T,\xi_T) \right)$$
s.t. $x_t \in \mathcal{X}_t \left(x_{[t-1]},\xi_{[t]} \right), \quad t = 1,\ldots,T.$

$$\mathbb{F}^{Z_1,\ldots,Z_t}(Z)(\omega):= \tilde{\mathbb{F}}(G_{Z\mid Z_1=z_1,\ldots,Z_t=z_t}).$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

In our context, multi-period risk measures are those applied to real-valued functions of the stochastic process $\{\xi_t\}_{t=1}^T$. To simplify notation, let

$$Z_t := f_t(x_t, \xi_t), Z := (Z_1, \ldots, Z_T).$$

The multi-period risk measure is denoted by $\mathbb{F}(Z)$.

$$\min_{x_1,\ldots,x_T} \mathbb{F} \left(f_1(x_1,\xi_1),\ldots,f_T(x_T,\xi_T) \right)$$
s.t. $x_t \in \mathcal{X}_t \left(x_{[t-1]},\xi_{[t]} \right), \quad t = 1,\ldots,T.$

Conditional risk function:

$$\mathbb{F}^{Z_1,\ldots,Z_t}(Z)(\omega):= \tilde{\mathbb{F}}(G_{Z\mid Z_1=z_1,\ldots,Z_t=z_t}).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Examples

Expected value:

$$\mathbb{F}(Z_1,\ldots,Z_T)=\mathbb{E}[Z_1+\ldots+Z_T]$$

Worst-case risk measure:

$$\mathbb{F}(Z_1,\ldots,Z_T) = \operatorname{ess\,sup}(Z_1+\ldots+Z_T)$$

Separated risk per stage:

$$\mathbb{F}(Z) = Z_1 + \rho_2(Z_2) + \ldots + \rho_T(Z_T)$$

Global risk:

$$\mathbb{F}(Z) = \rho(Z_1 + Z_2 + \ldots + Z_T)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Examples

Expected value:

$$\mathbb{F}(Z_1,\ldots,Z_T)=\mathbb{E}[Z_1+\ldots+Z_T]$$

Worst-case risk measure:

$$\mathbb{F}(Z_1,\ldots,Z_T) = \operatorname{ess\,sup}(Z_1+\ldots+Z_T)$$

Separated risk per stage:

$$\mathbb{F}(Z) = Z_1 + \rho_2(Z_2) + \ldots + \rho_T(Z_T)$$

Global risk:

$$\mathbb{F}(Z) = \rho(Z_1 + Z_2 + \ldots + Z_T)$$

There are several definitions in the literature (Ruszczyński '10, Kovacevic and Pflug '14, Detlefsen and Scandolo '05, Cheridito et al. '06, Bion-Nadal '08, Shapiro '09, Carpentier et al. '12, Rudloff et al. '14, Xin et al. '13, Pflug and Pichler '14, Eckstein '16).

Informal definition

When you solve the problem at time 1 and again at time t, some optimal solution obtained at time 1–calculated at the scenario that actually occurred between 1 and t–will also be optimal at time t.

Even more informal definition

The decision you make today should agree with some optimal plan made yesterday, given what was observed today.

Consistency

There are several definitions in the literature (Ruszczyński '10, Kovacevic and Pflug '14, Detlefsen and Scandolo '05, Cheridito et al. '06, Bion-Nadal '08, Shapiro '09, Carpentier et al. '12, Rudloff et al. '14, Xin et al. '13, Pflug and Pichler '14, Eckstein '16).

Informal definition

When you solve the problem at time 1 and again at time t, some optimal solution obtained at time 1–calculated at the scenario that actually occurred between 1 and t–will also be optimal at time t.

Even more informal definition

The decision you make today should agree with some optimal plan made yesterday, given what was observed today.

Consistency

There are several definitions in the literature (Ruszczyński '10, Kovacevic and Pflug '14, Detlefsen and Scandolo '05, Cheridito et al. '06, Bion-Nadal '08, Shapiro '09, Carpentier et al. '12, Rudloff et al. '14, Xin et al. '13, Pflug and Pichler '14, Eckstein '16).

Informal definition

When you solve the problem at time 1 and again at time t, some optimal solution obtained at time 1–calculated at the scenario that actually occurred between 1 and t–will also be optimal at time t.

Even more informal definition

The decision you make today should agree with some optimal plan made yesterday, given what was observed today.

Formal definition

$$\min_{x_t,\dots,x_T} \mathbb{F}^{\hat{\xi}_{[t]}} \left(f_t(x_t,\xi_t),\dots,f_T(x_T,\xi_T) \right)$$
s.t. $x_{\tau} \in \mathcal{X}_{\tau} \left(\hat{x}_{[t-1]}, x_t,\dots,x_{\tau-1}, \hat{\xi}_{[t]}, \xi_{t+1},\dots,\xi_{\tau} \right), \quad \tau = t,\dots,T.$

$$(1)$$

IOP

We say that the *inherited optimality property (henceforth called IOP)* holds if for any *t* such that $1 < t \le T$ and any realization $\hat{\xi}_1, \ldots, \hat{\xi}_t$, there exists an optimal solution x^* of the multistage problem such that the solution "inherited" from x^* at $\hat{\xi}_2, \ldots, \hat{\xi}_t$ coincides with an optimal solution of (1) for those *t*, $\hat{\xi}$, and $\hat{x} := x^*$.

Consistency

We say that the multi-period risk measure \mathbb{F} is *consistent* if the IOP holds for any particular instance of that problem.

Formal definition

$$\min_{x_t,\dots,x_T} \mathbb{F}^{\hat{\xi}_{[t]}} \left(f_t(x_t,\xi_t),\dots,f_T(x_T,\xi_T) \right)$$
s.t. $x_{\tau} \in \mathcal{X}_{\tau} \left(\hat{x}_{[t-1]}, x_t,\dots,x_{\tau-1}, \hat{\xi}_{[t]}, \xi_{t+1},\dots,\xi_{\tau} \right), \quad \tau = t,\dots,T.$

$$(1)$$

IOP

We say that the *inherited optimality property (henceforth called IOP)* holds if for any *t* such that $1 < t \le T$ and any realization $\hat{\xi}_1, \ldots, \hat{\xi}_t$, there exists an optimal solution x^* of the multistage problem such that the solution "inherited" from x^* at $\hat{\xi}_2, \ldots, \hat{\xi}_t$ coincides with an optimal solution of (1) for those *t*, $\hat{\xi}$, and $\hat{x} := x^*$.

Consistency

We say that the multi-period risk measure \mathbb{F} is *consistent* if the IOP holds for any particular instance of that problem.

Formal definition

$$\min_{x_t,\dots,x_T} \mathbb{F}^{\hat{\xi}_{[t]}} \left(f_t(x_t,\xi_t),\dots,f_T(x_T,\xi_T) \right)$$
s.t. $x_{\tau} \in \mathcal{X}_{\tau} \left(\hat{x}_{[t-1]},x_t,\dots,x_{\tau-1},\hat{\xi}_{[t]},\xi_{t+1},\dots,\xi_{\tau} \right), \quad \tau = t,\dots,T.$

$$(1)$$

IOP

We say that the *inherited optimality property (henceforth called IOP)* holds if for any *t* such that $1 < t \le T$ and any realization $\hat{\xi}_1, \ldots, \hat{\xi}_t$, there exists an optimal solution x^* of the multistage problem such that the solution "inherited" from x^* at $\hat{\xi}_2, \ldots, \hat{\xi}_t$ coincides with an optimal solution of (1) for those *t*, $\hat{\xi}$, and $\hat{x} := x^*$.

Consistency

We say that the multi-period risk measure \mathbb{F} is *consistent* if the IOP holds for any particular instance of that problem.

A 3-stage inventory problem

- Assume you are a retailer who sells one product and needs to decide now how much inventory to buy, at price *c* = \$2.
- There will be two selling opportunities: in the second stage the product can be sold at price $s_1 = \$3$ and on the third stage the product can be sold for $s_2 = \$10$.
- At the end of the horizon unsold units are discarded.
- Demand is given by a binary tree.

A 3-stage inventory problem

- Assume you are a retailer who sells one product and needs to decide now how much inventory to buy, at price *c* = \$2.
- There will be two selling opportunities: in the second stage the product can be sold at price $s_1 = \$3$ and on the third stage the product can be sold for $s_2 = \$10$.
- At the end of the horizon unsold units are discarded.
- Demand is given by a binary tree.

A 3-stage inventory problem

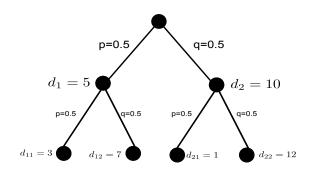
- Assume you are a retailer who sells one product and needs to decide now how much inventory to buy, at price *c* = \$2.
- There will be two selling opportunities: in the second stage the product can be sold at price $s_1 = \$3$ and on the third stage the product can be sold for $s_2 = \$10$.
- At the end of the horizon unsold units are discarded.

• Demand is given by a binary tree.

A 3-stage inventory problem

- Assume you are a retailer who sells one product and needs to decide now how much inventory to buy, at price c =\$2.
- There will be two selling opportunities: in the second stage the product can be sold at price $s_1 = \$3$ and on the third stage the product can be sold for $s_2 = \$10$.
- At the end of the horizon unsold units are discarded.
- Demand is given by a binary tree.

A scenario tree



・ロト・日本・日本・日本・日本・今日・

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Separated risk per stage

Using
$$\mathcal{R}(Z) = Z_1 + \rho_2(Z_2) + ... + \rho_T(Z_T)$$
, we have

$$\min cx + \rho_1 (-s_1 y) + \rho_2 (-s_2 z)$$
s.t. $y \le D$,
 $y \le x$,
 $z + y \le x$,
 $y < D$.

Тν	0		n		

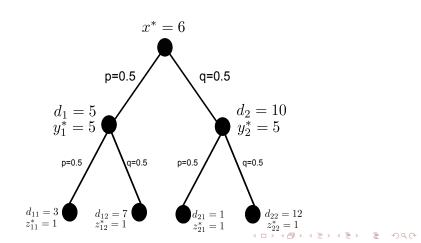
Multistage SP

Risk aversion in MSSP

A pension fund problem

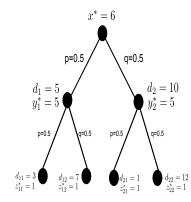
Conclusions

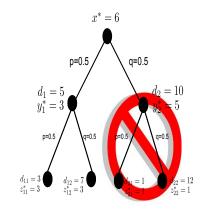
Solution



1		S			

Solution





イロト イ理ト イヨト イヨト

æ

990

▲□▶▲□▶▲□▶▲□▶ □ のQで

- In Homem-de-Mello and P. '15 it is shown that the global risk measure is also inconsistent.
- Are there examples of nontrivial consistent risk measures?
- If so, can the resulting formulations actually be solved?
- If so, how can I be sure that the solution protects me against risk?

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- In Homem-de-Mello and P. '15 it is shown that the global risk measure is also inconsistent.
- Are there examples of nontrivial consistent risk measures?
- If so, can the resulting formulations actually be solved?
- If so, how can I be sure that the solution protects me against risk?

- In Homem-de-Mello and P. '15 it is shown that the global risk measure is also inconsistent.
- Are there examples of nontrivial consistent risk measures?
- If so, can the resulting formulations actually be solved?
- If so, how can I be sure that the solution protects me against risk?

- In Homem-de-Mello and P. '15 it is shown that the global risk measure is also inconsistent.
- Are there examples of nontrivial consistent risk measures?
- If so, can the resulting formulations actually be solved?
- If so, how can I be sure that the solution protects me against risk?

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Consistent risk measures

Theorem

Consider the risk measure given by

$$\mathcal{R}(Z_1+Z_2+\ldots+Z_T)=\rho_2\circ\rho_3^{\xi_{[2]}}\circ\cdots\circ\rho_T^{\xi_{[T-1]}}(Z_1+\ldots+Z_T).$$

If each $\rho_t^{\xi_{[t-1]}}$ is translation-invariant and monotone, then \mathcal{R} is consistent.

Corollary

Nested risk measures, the risk neutral risk measure $\mathcal{R}(Z_1, \ldots, Z_T) = \mathbb{E}[Z_1 + \ldots + Z_T]$, and the worst-case risk measure $\mathcal{R}(Z_1, \ldots, Z_T) = essup(Z_1 + \ldots + Z_T)$ are also consistent.

Consistent risk measures

Theorem

Consider the risk measure given by

$$\mathcal{R}(Z_1+Z_2+\ldots+Z_T)=\rho_2\circ\rho_3^{\xi_{[2]}}\circ\cdots\circ\rho_T^{\xi_{[T-1]}}(Z_1+\ldots+Z_T).$$

If each $\rho_t^{\xi_{[t-1]}}$ is translation-invariant and monotone, then \mathcal{R} is consistent.

Corollary

Nested risk measures, the risk neutral risk measure $\mathcal{R}(Z_1, \ldots, Z_T) = \mathbb{E}[Z_1 + \ldots + Z_T]$, and the worst-case risk measure $\mathcal{R}(Z_1, \ldots, Z_T) = essup(Z_1 + \ldots + Z_T)$ are also consistent.

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへで

Nested risk measures

$$\begin{array}{l} \max \ c_0^T x_0 + \rho_{\xi_1} \left[Q_1(x_0, \xi_1) \right] \\ \text{subject to} \\ A_0 x_0 \ < \xi_0. \end{array} \tag{Risk-MSSP}$$

The function Q_1 is defined recursively as

$$Q_t(x_0,...,x_{t-1},\xi_1,...,\xi_t) = \max_{x_t} c_t^T x_t + \rho_{\xi_{t+1}} [Q_{t+1}(x_0,...,x_t,\xi_1,...,\xi_{t+1}) | \xi_1,...,\xi_t]$$

subject to

$$A_t x_t \leq \xi_t - \sum_{m=0}^{t-1} B_m x_m,$$

t = 1, ..., T. Also, $Q_{T+1} \equiv 0$.

Nested CVaR

A series of recent publications consider the case of nested risk measures in which each $\rho^{\xi_{[t-1]}}$ is defined as the Conditional CVaR:

$$\rho^{\xi_{[t-1]}}(Z_t) := \mathsf{CVaR}_{\alpha_t}^{\xi_{[t-1]}(Z_t)} = \min_{\eta_t \in \mathbb{R}} \left\{ \eta_t + \frac{1}{1 - \alpha_t} \mathbb{E}[(Z_t - \eta_t)_+ |\xi_{[t-1]}] \right\}.$$

Advantages:

- It is consistent, and Bellman-type algorithms for DP can be employed.
- Linearizing the CVaR leads to a standard MSSP, which can be solved by existing methods developed for risk neutral problems, e.g., SDDP: Guigues and Römisch '12, Guigues and Sagastizábal '12, Philpott, De Matos, Finardi '13, Shapiro et al. '13, Kozmík and Morton '14, Piazza and P. '15.

Disadvantages:

- Difficulty in evaluating the objective function, harder to obtain upper bounds.
- What are we really measuring?

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Nested CVaR

A series of recent publications consider the case of nested risk measures in which each $\rho^{\xi_{[t-1]}}$ is defined as the Conditional CVaR:

$$\rho^{\xi_{[t-1]}}(Z_t) := \mathsf{CVaR}_{\alpha_t}^{\xi_{[t-1]}(Z_t)} = \min_{\eta_t \in \mathbb{R}} \left\{ \eta_t + \frac{1}{1 - \alpha_t} \mathbb{E}[(Z_t - \eta_t)_+ |\xi_{[t-1]}] \right\}.$$

Advantages:

- It is consistent, and Bellman-type algorithms for DP can be employed.
- Linearizing the CVaR leads to a standard MSSP, which can be solved by existing methods developed for risk neutral problems, e.g., SDDP: Guigues and Römisch '12, Guigues and Sagastizábal '12, Philpott, De Matos, Finardi '13, Shapiro et al. '13, Kozmík and Morton '14, Piazza and P. '15.

Disadvantages:

- Difficulty in evaluating the objective function, harder to obtain upper bounds.
- What are we really measuring?

Nested CVaR

A series of recent publications consider the case of nested risk measures in which each $\rho^{\xi_{[t-1]}}$ is defined as the Conditional CVaR:

$$\rho^{\xi_{[t-1]}}(Z_t) := \mathsf{CVaR}_{\alpha_t}^{\xi_{[t-1]}(Z_t)} = \min_{\eta_t \in \mathbb{R}} \left\{ \eta_t + \frac{1}{1 - \alpha_t} \mathbb{E}[(Z_t - \eta_t)_+ |\xi_{[t-1]}] \right\}.$$

Advantages:

- It is consistent, and Bellman-type algorithms for DP can be employed.
- Linearizing the CVaR leads to a standard MSSP, which can be solved by existing methods developed for risk neutral problems, e.g., SDDP: Guigues and Römisch '12, Guigues and Sagastizábal '12, Philpott, De Matos, Finardi '13, Shapiro et al. '13, Kozmík and Morton '14, Piazza and P. '15.

Disadvantages:

- Difficulty in evaluating the objective function, harder to obtain upper bounds.
- What are we really measuring?

$\textit{ECRM}(Z) = Z_1 + \rho_2(Z_2) + \mathbb{E}_{\xi_{[2]}} \left[\rho_3^{\xi_{[2]}}(Z_3) \right] + \ldots + \mathbb{E}_{\xi_{[T-1]}} \left[\rho_T^{\xi_{[T-1]}}(Z_T) \right]$

- It is a promising candidate for several reasons:
 - (Homem-de-Mello and P., '15) If the risk measure ρ is translation invariant and monotone, then the corresponding ECRM is consistent.
 - 2 Midway between a separated and a nested formulation.
 - One can understand better how risk is being measured.
 - Can be converted into a modified risk neutral problem, which can be solved by any standard algorithm.

$$ECRM(Z) = Z_1 + \rho_2(Z_2) + \mathbb{E}_{\xi_{[2]}} \left[\rho_3^{\xi_{[2]}}(Z_3) \right] + \ldots + \mathbb{E}_{\xi_{[T-1]}} \left[\rho_T^{\xi_{[T-1]}}(Z_T) \right]$$

- It is a promising candidate for several reasons:
 - (Homem-de-Mello and P., '15) If the risk measure ρ is translation invariant and monotone, then the corresponding ECRM is consistent.
 - 2 Midway between a separated and a nested formulation.
 - One can understand better how risk is being measured.
 - Can be converted into a modified risk neutral problem, which can be solved by any standard algorithm.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

$$ECRM(Z) = Z_1 + \rho_2(Z_2) + \mathbb{E}_{\xi_{[2]}} \left[\rho_3^{\xi_{[2]}}(Z_3) \right] + \ldots + \mathbb{E}_{\xi_{[T-1]}} \left[\rho_T^{\xi_{[T-1]}}(Z_T) \right]$$

- It is a promising candidate for several reasons:
 - (Homem-de-Mello and P., '15) If the risk measure ρ is translation invariant and monotone, then the corresponding ECRM is consistent.
 - 2 Midway between a separated and a nested formulation.
 - One can understand better how risk is being measured.
 - Can be converted into a modified risk neutral problem, which can be solved by any standard algorithm.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$ECRM(Z) = Z_1 + \rho_2(Z_2) + \mathbb{E}_{\xi_{[2]}} \left[\rho_3^{\xi_{[2]}}(Z_3) \right] + \ldots + \mathbb{E}_{\xi_{[T-1]}} \left[\rho_T^{\xi_{[T-1]}}(Z_T) \right]$$

- It is a promising candidate for several reasons:
 - (Homem-de-Mello and P., '15) If the risk measure ρ is translation invariant and monotone, then the corresponding ECRM is consistent.
 - 2 Midway between a separated and a nested formulation.
 - One can understand better how risk is being measured.
 - Can be converted into a modified risk neutral problem, which can be solved by any standard algorithm.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

$$\textit{ECRM}(Z) = Z_1 + \rho_2(Z_2) + \mathbb{E}_{\xi_{[2]}} \left[\rho_3^{\xi_{[2]}}(Z_3) \right] + \ldots + \mathbb{E}_{\xi_{[T-1]}} \left[\rho_T^{\xi_{[T-1]}}(Z_T) \right]$$

- It is a promising candidate for several reasons:
 - (Homem-de-Mello and P., '15) If the risk measure ρ is translation invariant and monotone, then the corresponding ECRM is consistent.
 - Ø Midway between a separated and a nested formulation.
 - One can understand better how risk is being measured.
 - Can be converted into a modified risk neutral problem, which can be solved by any standard algorithm.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

$$\textit{ECRM}(Z) = Z_1 + \rho_2(Z_2) + \mathbb{E}_{\xi_{[2]}} \left[\rho_3^{\xi_{[2]}}(Z_3) \right] + \ldots + \mathbb{E}_{\xi_{[T-1]}} \left[\rho_T^{\xi_{[T-1]}}(Z_T) \right]$$

- It is a promising candidate for several reasons:
 - (Homem-de-Mello and P., '15) If the risk measure ρ is translation invariant and monotone, then the corresponding ECRM is consistent.
 - Ø Midway between a separated and a nested formulation.
 - One can understand better how risk is being measured.
 - Can be converted into a modified risk neutral problem, which can be solved by any standard algorithm.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

$$ECRM(Z) = Z_1 + \rho_2(Z_2) + \mathbb{E}_{\xi_{[2]}} \left[\rho_3^{\xi_{[2]}}(Z_3) \right] + \ldots + \mathbb{E}_{\xi_{[T-1]}} \left[\rho_T^{\xi_{[T-1]}}(Z_T) \right]$$

- It is a promising candidate for several reasons:
 - (Homem-de-Mello and P., '15) If the risk measure ρ is translation invariant and monotone, then the corresponding ECRM is consistent.
 - Ø Midway between a separated and a nested formulation.
 - One can understand better how risk is being measured.
 - Can be converted into a modified risk neutral problem, which can be solved by any standard algorithm.

Multistage SP

Risk aversion in MSSP

A pension fund problem

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Conclusions

Bellman equations

$$Q_t(x_{t-1},\xi_{[t]},\eta_t) = \min_{\eta_{t+1},x_t} \frac{1}{1-\alpha_t} (f_t(x_t,\xi_t)-\eta_t)_+ + \eta_{t+1} + \mathbb{E}_{\xi_{t+1}} \left[Q_{t+1}(x_t,\xi_{t+1},\eta_{t+1}) \,|\,\xi_{[t]} \right].$$

For the last period we have

$$Q_{\mathcal{T}}(x_{\mathcal{T}-1},\xi_{\mathcal{T}},\eta_{\mathcal{T}}) = \min_{x_{\mathcal{T}}} \frac{1}{1-\alpha_{\mathcal{T}}} (f_{\mathcal{T}}(x_{\mathcal{T}},\xi_{\mathcal{T}})-\eta_{\mathcal{T}})_+.$$

Multistage SP

Risk aversion in MSSP

A pension fund problem

Conclusions

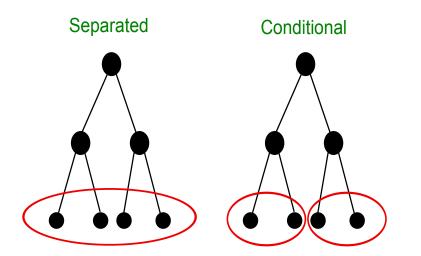
Bellman equations

$$Q_t(x_{t-1},\xi_{[t]},\eta_t) = \min_{\eta_{t+1},x_t} \frac{1}{1-\alpha_t} (f_t(x_t,\xi_t)-\eta_t)_+ + \eta_{t+1} + \mathbb{E}_{\xi_{t+1}} \left[Q_{t+1}(x_t,\xi_{t+1},\eta_{t+1}) \,|\,\xi_{[t]} \right].$$

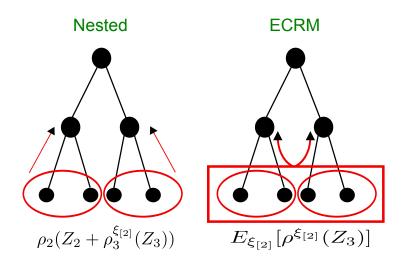
For the last period we have

$$Q_{\mathcal{T}}(x_{\mathcal{T}-1},\xi_{\mathcal{T}},\eta_{\mathcal{T}}) = \min_{x_{\mathcal{T}}} \frac{1}{1-\alpha_{\mathcal{T}}} (f_{\mathcal{T}}(x_{\mathcal{T}},\xi_{\mathcal{T}})-\eta_{\mathcal{T}})_+.$$

Separated versus conditional



Nested versus ECRM



◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ⊙

	Risk aversion in MSSP	A pension fund problem	Conclusions
Outline			

Two stage SP

2 Multistage SP

3 Risk aversion in MSSP

A pension fund problem

5 Conclusions

- The fund sponsor has to maintain the ratio between assets and liabilities above some pre-specified threshold at every time period.
- To achieve this goal, three sources of income can be used:
 - Returns from the asset portfolio (stocks, bonds, real estate, cash)
 - Regular contributions made by fund participants
 - Remedial contributions done by the company, which are money injections intended to keep the fund solvent.
- The objective function is to minimize the expected value of the net present value of remedial contributions and contribution rates from the participants, while keeping the funding ratio above a threshold.

- The fund sponsor has to maintain the ratio between assets and liabilities above some pre-specified threshold at every time period.
- To achieve this goal, three sources of income can be used:
 - Returns from the asset portfolio (stocks, bonds, real estate, cash)
 - Regular contributions made by fund participants
 - Remedial contributions done by the company, which are money injections intended to keep the fund solvent.
- The objective function is to minimize the expected value of the net present value of remedial contributions and contribution rates from the participants, while keeping the funding ratio above a threshold.

- The fund sponsor has to maintain the ratio between assets and liabilities above some pre-specified threshold at every time period.
- To achieve this goal, three sources of income can be used:
 - Returns from the asset portfolio (stocks, bonds, real estate, cash)
 - Regular contributions made by fund participants
 - Remedial contributions done by the company, which are money injections intended to keep the fund solvent.
- The objective function is to minimize the expected value of the net present value of remedial contributions and contribution rates from the participants, while keeping the funding ratio above a threshold.

- The fund sponsor has to maintain the ratio between assets and liabilities above some pre-specified threshold at every time period.
- To achieve this goal, three sources of income can be used:
 - Returns from the asset portfolio (stocks, bonds, real estate, cash)
 - Regular contributions made by fund participants
 - Remedial contributions done by the company, which are money injections intended to keep the fund solvent.
- The objective function is to minimize the expected value of the net present value of remedial contributions and contribution rates from the participants, while keeping the funding ratio above a threshold.

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
The model				

- We consider a problem with 4 stages, a scenario tree with 1000 scenarios, with 10 bifurcations per node (thanks to M. van der Vlerk for the data)
- We solved the problem using the ECRM with the CVaR as the risk measure; implementation was done in SLP-IOR (Kall and Mayer 1996) using the equivalent risk-neutral formulation.

	stocks	bonds	real estate	C_1	Z_1
	4948	8460		.21	
	7656	4952	3899	.21	
	8475	4952		.21	
	7656	5470		.21	
	7427	4951	4126	.13	
(.5,.5,.5)	5777	6594	4124	.21	

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
The model				

- We consider a problem with 4 stages, a scenario tree with 1000 scenarios, with 10 bifurcations per node (thanks to M. van der Vlerk for the data)
- We solved the problem using the ECRM with the CVaR as the risk measure; implementation was done in SLP-IOR (Kall and Mayer 1996) using the equivalent risk-neutral formulation.

	stocks	bonds	real estate	<i>C</i> ₁	Z_1
	4948	8460		.21	
	7656	4952	3899	.21	
	8475	4952		.21	
	7656	5470		.21	
	7427	4951	4126	.13	
(.5,.5,.5)	5777	6594	4124	.21	

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
The model				

- We consider a problem with 4 stages, a scenario tree with 1000 scenarios, with 10 bifurcations per node (thanks to M. van der Vlerk for the data)
- We solved the problem using the ECRM with the CVaR as the risk measure; implementation was done in SLP-IOR (Kall and Mayer 1996) using the equivalent risk-neutral formulation.

	stocks	bonds	real estate	<i>C</i> ₁	Z_1
	4948	8460		.21	
	7656	4952	3899	.21	
	8475	4952		.21	
	7656	5470		.21	
	7427	4951	4126	.13	
(.5,.5,.5)	5777	6594	4124	.21	

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
The model	l			

- We consider a problem with 4 stages, a scenario tree with 1000 scenarios, with 10 bifurcations per node (thanks to M. van der Vlerk for the data)
- We solved the problem using the ECRM with the CVaR as the risk measure; implementation was done in SLP-IOR (Kall and Mayer 1996) using the equivalent risk-neutral formulation.

α	stocks	bonds	real estate	cash	<i>C</i> ₁	Z_1
(.95,0,0)	4948	8460	3085	0	.21	0
(0,0,.95)	7656	4952	3899	0	.21	0
(0,.95,0)	8475	4952	3080	0	.21	0
(.95,.95,.95)	7656	5470	3383	0	.21	0
(0,0,0)	7427	4951	4126	0	.13	0
(.5,.5,.5)	5777	6594	4124	0	.21	0

▲□▶▲□▶▲□▶▲□▶ □ のQで

Analyzing the first stage solutions

- The (.95, 0, 0) solution invests only 30% in stocks, as opposed to an average of 48% of other solutions.
- The (.95, .95, .95) solution offers a similar protection, but it is also concerned with other stages.
- The risk neutral solution seems to be the best: lowest contribution rate, and no remedial contribution.
- If we look beyond the first stage solution, the picture is quite different...

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Analyzing the first stage solutions

- The (.95, 0, 0) solution invests only 30% in stocks, as opposed to an average of 48% of other solutions.
- The (.95, .95, .95) solution offers a similar protection, but it is also concerned with other stages.
- The risk neutral solution seems to be the best: lowest contribution rate, and no remedial contribution.
- If we look beyond the first stage solution, the picture is quite different...

▲ロト ▲ 理 ト ▲ 王 ト ▲ 国 ト ● ● ● ● ●

Analyzing the first stage solutions

- The (.95, 0, 0) solution invests only 30% in stocks, as opposed to an average of 48% of other solutions.
- The (.95, .95, .95) solution offers a similar protection, but it is also concerned with other stages.
- The risk neutral solution seems to be the best: lowest contribution rate, and no remedial contribution.

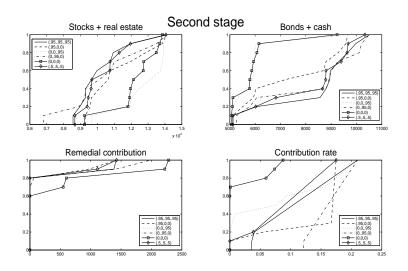
• If we look beyond the first stage solution, the picture is quite different...

▲ロト ▲ 理 ト ▲ 王 ト ▲ 国 ト ● ● ● ● ●

Analyzing the first stage solutions

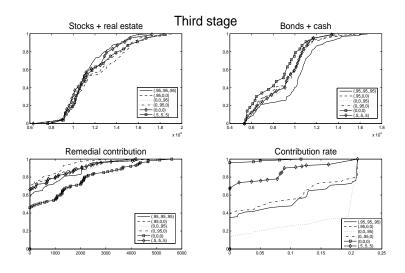
- The (.95, 0, 0) solution invests only 30% in stocks, as opposed to an average of 48% of other solutions.
- The (.95, .95, .95) solution offers a similar protection, but it is also concerned with other stages.
- The risk neutral solution seems to be the best: lowest contribution rate, and no remedial contribution.
- If we look beyond the first stage solution, the picture is quite different...

A representation of the second stage solution



・ロト ・母 ト ・ 母 ト ・ 母 ト ・ 日 ト ・ の へ ()・

A representation of the third stage solution



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Dominance				

- The remedial contribution for the risk neutral solution (RNS) first-order stochastically dominates (FOSD) all other solutions in both stages!
- In other words, for every value of *x* the probability of having losses greater than or equal to *x* will be larger for the RNS.
- The (.95, .95, .95) solution FOSD (0, .95, 0) and SOSD (.95, 0, 0).
- Bonds and cash: the RNS is second-order stochastically dominated by all other solutions in both stages while the (.95,.95,.95) SOSD all other solutions in the third stage.
- The probability of investing less than \$10⁴ on risky assets is on average 45% for risk averse solution, while it is only 10% for the RNS.
- The (.5, .5, .5) is a interesting case: its curves for remedial contribution and contribution rate lie roughly in between all curves. As expected?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Dominance				

- The remedial contribution for the risk neutral solution (RNS) first-order stochastically dominates (FOSD) all other solutions in both stages!
- In other words, for every value of *x* the probability of having losses greater than or equal to *x* will be larger for the RNS.
- The (.95, .95, .95) solution FOSD (0, .95, 0) and SOSD (.95, 0, 0).
- Bonds and cash: the RNS is second-order stochastically dominated by all other solutions in both stages while the (.95,.95,.95) SOSD all other solutions in the third stage.
- The probability of investing less than \$10⁴ on risky assets is on average 45% for risk averse solution, while it is only 10% for the RNS.
- The (.5, .5, .5) is a interesting case: its curves for remedial contribution and contribution rate lie roughly in between all curves. As expected?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Dominance				

- The remedial contribution for the risk neutral solution (RNS) first-order stochastically dominates (FOSD) all other solutions in both stages!
- In other words, for every value of *x* the probability of having losses greater than or equal to *x* will be larger for the RNS.
- The (.95, .95, .95) solution FOSD (0,.95,0) and SOSD (.95,0,0).
- Bonds and cash: the RNS is second-order stochastically dominated by all other solutions in both stages while the (.95,.95,.95) SOSD all other solutions in the third stage.
- The probability of investing less than \$10⁴ on risky assets is on average 45% for risk averse solution, while it is only 10% for the RNS.
- The (.5, .5, .5) is a interesting case: its curves for remedial contribution and contribution rate lie roughly in between all curves. As expected?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Dominance				

- The remedial contribution for the risk neutral solution (RNS) first-order stochastically dominates (FOSD) all other solutions in both stages!
- In other words, for every value of *x* the probability of having losses greater than or equal to *x* will be larger for the RNS.
- The (.95, .95, .95) solution FOSD (0,.95,0) and SOSD (.95,0,0).
- Bonds and cash: the RNS is second-order stochastically dominated by all other solutions in both stages while the (.95,.95,.95) SOSD all other solutions in the third stage.
- The probability of investing less than \$10⁴ on risky assets is on average 45% for risk averse solution, while it is only 10% for the RNS.
- The (.5, .5, .5) is a interesting case: its curves for remedial contribution and contribution rate lie roughly in between all curves. As expected?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Dominance				

- The remedial contribution for the risk neutral solution (RNS) first-order stochastically dominates (FOSD) all other solutions in both stages!
- In other words, for every value of *x* the probability of having losses greater than or equal to *x* will be larger for the RNS.
- The (.95, .95, .95) solution FOSD (0,.95,0) and SOSD (.95,0,0).
- Bonds and cash: the RNS is second-order stochastically dominated by all other solutions in both stages while the (.95,.95,.95) SOSD all other solutions in the third stage.
- The probability of investing less than \$10⁴ on risky assets is on average 45% for risk averse solution, while it is only 10% for the RNS.
- The (.5, .5, .5) is a interesting case: its curves for remedial contribution and contribution rate lie roughly in between all curves. As expected?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Dominance				

- The remedial contribution for the risk neutral solution (RNS) first-order stochastically dominates (FOSD) all other solutions in both stages!
- In other words, for every value of *x* the probability of having losses greater than or equal to *x* will be larger for the RNS.
- The (.95, .95, .95) solution FOSD (0, .95, 0) and SOSD (.95, 0, 0).
- Bonds and cash: the RNS is second-order stochastically dominated by all other solutions in both stages while the (.95,.95,.95) SOSD all other solutions in the third stage.
- The probability of investing less than \$10⁴ on risky assets is on average 45% for risk averse solution, while it is only 10% for the RNS.
- The (.5, .5, .5) is a interesting case: its curves for remedial contribution and contribution rate lie roughly in between all curves. As expected?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Dominance				

- The remedial contribution for the risk neutral solution (RNS) first-order stochastically dominates (FOSD) all other solutions in both stages!
- In other words, for every value of *x* the probability of having losses greater than or equal to *x* will be larger for the RNS.
- The (.95, .95, .95) solution FOSD (0, .95, 0) and SOSD (.95, 0, 0).
- Bonds and cash: the RNS is second-order stochastically dominated by all other solutions in both stages while the (.95,.95,.95) SOSD all other solutions in the third stage.
- The probability of investing less than \$10⁴ on risky assets is on average 45% for risk averse solution, while it is only 10% for the RNS.
- The (.5, .5, .5) is a interesting case: its curves for remedial contribution and contribution rate lie roughly in between all curves. As expected?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Outline				

- 2 Multistage SP
- 3 Risk aversion in MSSP
- A pension fund problem

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions

- Conclusions
 - While the is some consensus on how two stage risk averse stochastic programming should be modelled, there is no standard way of modeling multistage risk averse problems.
 - Much of the literature focuses on nested CVaR formulations. Great research opportunity!
 - We have discussed an alternative approach, which we call ECRM, that addresses some issues that appear with nested formulations.
 - When the CVaR is chosen, the problem can represented as a risk-neutral problem on a "lifted" space, so standard algorithms can be used.
 - Moreover, since risk measures are applied in a stage-wise fashion, it is easier to control how risk is being measured via the values of α_t.
 - Key questions, from a practical viewpoint: a)What is the appropriate risk measure for my problem? b) How can I generate scenarios adapted to some risk measure?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
· · ·				
Conclusio	ns			

- While the is some consensus on how two stage risk averse stochastic programming should be modelled, there is no standard way of modeling multistage risk averse problems.
- Much of the literature focuses on nested CVaR formulations. Great research opportunity!
- We have discussed an alternative approach, which we call ECRM, that addresses some issues that appear with nested formulations.
- When the CVaR is chosen, the problem can represented as a risk-neutral problem on a "lifted" space, so standard algorithms can be used.
- Moreover, since risk measures are applied in a stage-wise fashion, it is easier to control how risk is being measured via the values of α_t.
- Key questions, from a practical viewpoint: a)What is the appropriate risk measure for my problem? b) How can I generate scenarios adapted to some risk measure?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions

- Conclusions
 - While the is some consensus on how two stage risk averse stochastic programming should be modelled, there is no standard way of modeling multistage risk averse problems.
 - Much of the literature focuses on nested CVaR formulations. Great research opportunity!
 - We have discussed an alternative approach, which we call ECRM, that addresses some issues that appear with nested formulations.
 - When the CVaR is chosen, the problem can represented as a risk-neutral problem on a "lifted" space, so standard algorithms can be used.
 - Moreover, since risk measures are applied in a stage-wise fashion, it is easier to control how risk is being measured via the values of α_t.
 - Key questions, from a practical viewpoint: a)What is the appropriate risk measure for my problem? b) How can I generate scenarios adapted to some risk measure?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
Conclusio	ns			

- While the is some consensus on how two stage risk averse stochastic programming should be modelled, there is no standard way of modeling multistage risk averse problems.
- Much of the literature focuses on nested CVaR formulations. Great research opportunity!
- We have discussed an alternative approach, which we call ECRM, that addresses some issues that appear with nested formulations.
- When the CVaR is chosen, the problem can represented as a risk-neutral problem on a "lifted" space, so standard algorithms can be used.
- Moreover, since risk measures are applied in a stage-wise fashion, it is easier to control how risk is being measured via the values of α_t.
- Key questions, from a practical viewpoint: a)What is the appropriate risk measure for my problem? b) How can I generate scenarios adapted to some risk measure?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
· · ·				
Conclusio	ns			

- While the is some consensus on how two stage risk averse stochastic programming should be modelled, there is no standard way of modeling multistage risk averse problems.
 - Much of the literature focuses on nested CVaR formulations. Great research opportunity!
 - We have discussed an alternative approach, which we call ECRM, that addresses some issues that appear with nested formulations.
 - When the CVaR is chosen, the problem can represented as a risk-neutral problem on a "lifted" space, so standard algorithms can be used.
 - Moreover, since risk measures are applied in a stage-wise fashion, it is easier to control how risk is being measured via the values of α_t.
 - Key questions, from a practical viewpoint: a)What is the appropriate risk measure for my problem? b) How can I generate scenarios adapted to some risk measure?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
· · ·				
Conclusio	ns			

- While the is some consensus on how two stage risk averse stochastic programming should be modelled, there is no standard way of modeling multistage risk averse problems.
- Much of the literature focuses on nested CVaR formulations. Great research opportunity!
- We have discussed an alternative approach, which we call ECRM, that addresses some issues that appear with nested formulations.
- When the CVaR is chosen, the problem can represented as a risk-neutral problem on a "lifted" space, so standard algorithms can be used.
- Moreover, since risk measures are applied in a stage-wise fashion, it is easier to control how risk is being measured via the values of α_t.
- Key questions, from a practical viewpoint: a)What is the appropriate risk measure for my problem? b) How can I generate scenarios adapted to some risk measure?

Two stage SP	Multistage SP	Risk aversion in MSSP	A pension fund problem	Conclusions
· · ·				
Conclusio	ns			

- While the is some consensus on how two stage risk averse stochastic programming should be modelled, there is no standard way of modeling multistage risk averse problems.
- Much of the literature focuses on nested CVaR formulations. Great research opportunity!
- We have discussed an alternative approach, which we call ECRM, that addresses some issues that appear with nested formulations.
- When the CVaR is chosen, the problem can represented as a risk-neutral problem on a "lifted" space, so standard algorithms can be used.
- Moreover, since risk measures are applied in a stage-wise fashion, it is easier to control how risk is being measured via the values of α_t.
- Key questions, from a practical viewpoint: a)What is the appropriate risk measure for my problem? b) How can I generate scenarios adapted to some risk measure?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Contact information

Thank you!

Bernardo Pagnoncelli (bernardo.pagnoncelli@uai.cl)

Reference: Homem-de-Mello, T. and P. Risk aversion in multistage stochastic programming: a modeling and algorithmic perspective. EJOR '16.

This research has been supported by Fondecyt projects 1130056 and 1120244, Chile.