Mechanism design and allocation algorithms for energy-network markets with piece-wise linear costs and quadratic externalities

Alejandro Jofré¹

Center for Mathematical Modeling & DIM Universidad de Chile

IMPA-SVAN- Rio de Janeiro, March 28-April 1

¹ In collaboration with N. Figueroa and B. Heymann

- Introduction and motivation
- Modeling market and Equilibrium. Discontinuous Games
- Nash and beyond
- Intrinsic market Power
- Efficient regulations and Extended Mechanism Design
- Conclusions

Introduction and motivation

- Modeling Market
 Equilibrium: Nash
- Intrinsic Market Power
- Efficient regulations and mechanism design
 The benchmark game
 - Comparing Benchmark with Optimal Mechanism

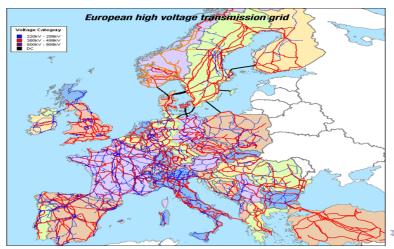
Intrinsic Market Power

- Most of ISOs have few generation companies: oligopoly
- Transmission networks highly congested in some areas
- Intrinsic market power produced by externalities and information asymmetries

Intrinsic Market Power

Efficient regulations and mechanism design

Transmission Europe



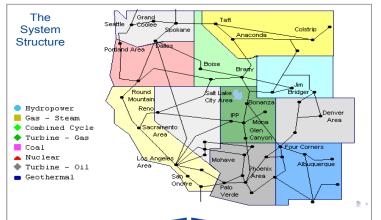
≜ ∽্ 5/46

Intrinsic Market Power

Efficient regulations and mechanism design

Transmission California

Electricity System Structure



≣ ∽ < (~ 6/46

Intrinsic Market Power

Efficient regulations and mechanism design

Transmission Brazil: ONS

Brazilian Interconected Power System - BIPS

- Multi-owned: 97 agents own assets (≥ 230 kV)
- The Main Transmission Grid is operated and expanded in order to achieve safety of supply and system optimization
- Inter-regional and inter-basin transmission links allow interchange of large blocks of energy between regions, based on the hydrological diversity between river basins
- The current challenge is the interconnection of the projects in the Amazonian Region

ONS: F.J. Arteiro de Oliveira

5 ONS Operator Nacional

Intrinsic Market Power

Efficient regulations and mechanism design

< ロ > < 同 > < 回 > < 回 >

8/46

Introduction and motivation

- Modeling Market
 Equilibrium: Nash
- Intrinsic Market Power
- Efficient regulations and mechanism design
 The benchmark game
 - Comparing Benchmark with Optimal Mechanism

Intrinsic Market Power

A generation short term market: day-ahead mandatory pool

- Today: generators taking into account an estimation of the demand bid *increasing piece-wise linear cost functions or equivalently piece-wise constant "price"*. Even general convex cost functions.
- Tomorrow: the (ISO) using this information and knowing a realization of the demand, minimizes the sum of the costs to satisfy demands at each node considering all the transmission constraints: "dispatch problem".
- Tomorrow: the (ISO) sends back to generators the optimal quantities and "prices" (multipliers associated to supply = demand balance equation at each node)

Intrinsic Market Power

Efficient regulations and mechanism design

ISO New England adjusts to changing electricity market

ଏ ଏ 10/46

Intrinsic Market Power

Efficient regulations and mechanism design

ISO problem or dispatch DP(c, d)

The (ISO) knows a realization of the demand $d \in \mathbb{R}^V$, receives the costs functions bid $(c_i)_{i \in G}$ and compute: $(q_i)_{i \in G}$, $(\lambda_i)_{i \in G}$

$$\min_{(h,q)} \quad \sum_{i \in G} c_i(q_i). \tag{1}$$

$$\sum_{e \in K_i} \frac{r_e}{2} h_e^2 + d_i \le q_i + \sum_{e \in K_i} h_e sgn(e, i), \quad i \in G$$
(2)

$$q_i \in [0, \bar{q}_i], \quad i \in G, \tag{3}$$

$$0 \le h_e \le \overline{h}_e \tag{4}$$

イロト イポト イヨト イヨト

11/46

We denote $Q(c, d) \subset \mathbb{R}^G$ the generation component of the optimal solution set associated to each cost vector submitted $c = (c_i)$ and demand d. We denote $\Lambda(c, d) \subset \mathbb{R}^G$ the set of multipliers associated to the supply=demand in the ISO problem.

Intrinsic Market Power

Efficient regulations and mechanism design

Modeling Generators

1 At each node $i \in G$ we have a generator with payoff

$$u_i(\lambda, q) = \lambda q - \bar{c}_i(q)$$

 \bar{c}_i is the real cost.

The strategic set for each player i denoted S_i:

 $\{c_i \colon \mathbb{R} \to \mathbb{R}_+ \mid \text{ convex, nondecreasing, bounded subgradients or } \}$ $\partial c_i \subset [0, p^*]$, p^* is a price cap.

Outline	Introduction and motivation	Modeling Market	Intrinsic Market Power	Efficient regulations and mechanism design			
Equilibrium: Nash							
_							

Equilibrium

An equilibrium is (q, λ, m) such that q is a selection of $Q(\cdot, \cdot)$ and λ is a selection of $\Lambda(\cdot, \cdot)$ and $m = (m_i)_{i \in G}$ is a mixed-strategy equilibrium of the generator game in which each generator submits costs $c_i \in S_i$ with a payoff

$$\mathbb{E}u_i(\lambda_i(c,\cdot),q_i(c,\cdot)) = \int_D [\lambda_i(c,d)q_i(c,d) - \bar{c}_i(q_i(c,d))]d\mathbb{P}(d),$$

Neutral or risk averse

Remark: this game is played everyday !

Outline	Introduction and motivation	Modeling Market	Intrinsic Market Power	Efficient regulations and mechanism design			
Equilibrium: Nash							
Lite	rature						

- In some cases, for example, using a supply function equilibria approach there are previous works by Anderson, Philpott, or using variational inequality approach by Pang, Ralph, Ferris or also using game theory by Hogan, Smeers, Wilson, Joskow, Tirole, Hobbs, Oren, Borestein, Wolak...
- Limited network representation or strategic behavior or strategy space.
- What is the behavior of this game? How the ISO is interacting with the players?

Outline Introduction and motivation

Intrinsic Market Power

Efficient regulations and mechanism design

Equilibrium: Nash

Nash equilibrium

Consider a game $G = (X_i, u_i)^N$ that consists of N players where each player i = 1, ..., N has a strategy set X_i and a payoff function $u_i : X \to \mathbb{R}$, where $X = \prod_{i \in N} X_i$.

Nash equilibrium (x_i^*)

$$x_i^* \in \operatorname{argmax} \{u_i(x_i, x_{-i}^*) | x_i \in X_i\}$$

Intrinsic Market Power

Equilibrium: Nash

Nash equilibrium

For the sake of simplicity, we assume that each X_i is contained in a metric vectorial space:

- If for all *i* the strategy set *X_i* is a compact set, and *u_i* is a bounded function, we say that *G* is a *compact game*.
- If for all *i* the set X_i is convex and for each $x_{-i} \in X_{-i}$, $u_i(\cdot, x_i)$ is a (concave) quasiconcave function, then we say that *G* is a *convex game* (*quasiconvex game*)

Intrinsic Market Power

Efficient regulations and mechanism design

Equilibrium: Nash

Nash equilibrium existence

A convex compact game $G = (X_i, u_i)^N$ satisfying:

- $u_i(\cdot, \cdot)$ is upper semicontinuous
- $u_i(x_i, \cdot)$ is lower semicontinuous for all x_i

has a Nash equilibrium point.

Extensions: generalized games, convergence-stabilty lopsided convergence

Intrinsic Market Power

Efficient regulations and mechanism design

Equilibrium: Nash

Discontinuos games: tie-breaking rules

Consider the following two-player game: Let the payoff for the i player be given by

$$u_{i}(x_{i}, x_{-i}) = \begin{cases} l_{i}(x_{i}) & \text{if } x_{i} < x_{-i}, \\ \varphi(x_{i}) & \text{if } x_{i} = x_{-i}, \\ m_{i}(x_{-i}) & \text{if } x_{i} > x_{-i}, \end{cases}$$
(5)

where $x_i \in [0, 1]$. Assume that for all i and $x \in [0, 1]$ (a) l_i and m_i are continuous functions, l_i is nondecreasing $\varphi(x)$ is a convex combination of $l_i(x)$ and $m_i(x)$; sign $[l_i(x) - \varphi(x)] = \text{ sign } [\varphi_{-i}(x) - m_{-i}(x)]$.

Intrinsic Market Power

Efficient regulations and mechanism design

Equilibrium: Nash

Existence discontinuos games

Reny (1999) Econometrica

Theorem

A compact quasiconcave game possesses a Nash equilibrium if it is also a better reply secure game.

Bagh and Jofre (2006) Econometrica

Theorem

If $(X_i, u_i)^N$ is weakly reciprocally upper semicontinuous and payoff secure, then it is better reply secure.

Outline	Introduction and motivation	Modeling Market	Intrinsic Market Power	Efficient regulations and mechanism design				
Equilibrium: Nash								

Assumptions

S1. For all $d \in D$, there exists $\delta_d > 0$ such that

$$\Omega(d) \neq \emptyset, \quad \|\hat{d} - d\| \le \delta_d.$$

S2. *D* is compact S3. (1) Either \mathbb{P} is non atomic; or (2) given two convex sets $M, N \subset \mathbb{R}^G$, $u(M \times N)$ is convex. S4 $u_i \colon \mathbb{R}^2 \to \mathbb{R}$ is continuous.

Intrinsic Market Power

Efficient regulations and mechanism design

Equilibrium: Nash

Equilibrium existence

Theorem

If each S_v is a nonempty closed set for the point-wise convergence, then there exists an equilibrium (q, λ, m) for the bid-based generator pool game.

Example: In real system... increasing piece-wise constant cost functions

イロト イポト イヨト イヨト

23/46

Introduction and motivation

Modeling Market
 Equilibrium: Nash

Intrinsic Market Power

- 4 Efficient regulations and mechanism design
 - The benchmark game
 - Comparing Benchmark with Optimal Mechanism

Intrinsic Market Power

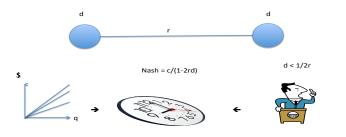
Efficient regulations and mechanism design

Two-node case

Two nodes case

Symmetric Nash equilibrium

Profit = multiplier × quantity - cost × quantity



<ロ>

<日>

<日>

<日>

<10>

24/46

Intrinsic Market Power

Efficient regulations and mechanism design

the ISO Problem: two-node case

Given that each generator reveals a cost c_i , the (ISO) solves:

$$\begin{array}{ll} \min_{q,h} & \sum_{i=1}^{2} c_{i}q_{i} \\ s.t. & q_{i}-h_{i}+h_{-i} \geq \frac{r}{2}[h_{1}^{2}+h_{2}^{2}]+d \ \ \text{for} \ \ i=1,2 \\ & q_{i},h_{i} \geq 0 \ \ \text{for} \ \ i=1,2 \end{array}$$

<ロ><部</p>
<ロ><部</p>
<10</p>
<1

イロト イポト イヨト イヨト

26/46

• Escobar and J. (ET (2010)) equilibrium exists but producers charge a price above marginal cost:

$$Nash = \bar{c}/(1 - 2rd)$$

Intrinsic Market Power

Efficient regulations and mechanism design

Sensitivity formula

Proposition

Let $c \in \prod_{i \in G} S_i$ and $c_i - \hat{c}_i$ a Lipschitz function with constant κ . Then,

$$|Q_i(c,d) - Q_i(\hat{c}_i, c_{-i}, d)| \le \kappa \eta,$$

where
$$\eta = 2 \frac{(1+r_i \bar{h}_i)^2}{\min_{i \in G} r_i c_i^+(0)} \in]0, +\infty[$$
 and $c_i^+(0) = \lim_{y \to 0+} \frac{c_i(y) - c_i(0)}{y}.$

Why? losses => the second-order growth

・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ の へ や
27/46

Intrinsic Market Power

Efficient regulations and mechanism design

Market Power formula

Proposition

The equilibrium prices p_i satisfy

$$\mathbb{E}|p_i - \gamma| \ge \frac{\mathbb{E}[Q_i(p_i, p_{-i}, d)]}{\bar{\eta}_i}$$

where $\bar{\eta}_i = 2 \frac{|K_i|^2 \left(1 + \max\{r_e \overline{h}_e : e \in K_i\}\right)^2}{p_* \min_{e \in K} r_e}$

 $\gamma(p_{-i}, d)$ is a measurable selection of $\partial \bar{c}_i(Q_i(p_i, p_{-i}, d))$.

(ロ)、(部)、(言)、(言)、(言)、(言)、(の)、(28/46)

Intrinsic Market Power

Efficient regulations and mechanism design

Market Power formula

Proposition

Linear case: $\bar{c}_i(q) = \bar{c}_i q$, then

$$p_i - \bar{c}_i \ge \frac{\mathbb{E}[Q_i(p_i, p_{-i}, d)]}{\bar{\eta}}.$$

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の Q () 29/46

Introduction and motivation

- Modeling Market
 Equilibrium: Nash
- Intrinsic Market Power

4 Efficient regulations and mechanism design

- The benchmark game
- Comparing Benchmark with Optimal Mechanism

Intrinsic Market Power

The Questions

In an electric network with **transmission costs** and **private information**:

- Does the usual (price equal Lagrange multiplier) regulation mechanism minimize costs for the society?
- If not, what is the mechanism that achieves this objective?
- How does the performance of both systems compare?

Methodology:

- Bayesian Game Theory
- Mechanism Design

Intrinsic Market Power

- A network with demand *d* at each node.
- One producer at each node, with piece-wise linear cost of production c_i ~ F_i[c_i, c_i]. Common knowledge ! This game is played everyday !
- Transmission costs *rh*², with *h* the amount sent from one node to another.

Intrinsic Market Power

Efficient regulations and mechanism design

ヘロン 人通 と 人 回 と 人 回 と

ISO for piece-wise linear cost functions

Problem

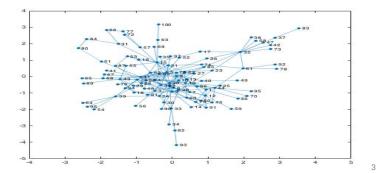
 $\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i,j} c_{i,j}$ minimize (q,h) $i = 1 \ i = 1$ $\sum_{i=1}^{N} q_{i,j} + \sum_{i=1}^{N} h_{i',i} - h_{i,i'} - \frac{h_{i,i'}^2 + h_{i',i}^2}{2} r_{i,i'} \ge d_i \quad (\lambda_i)$ i=1 $i' \in V(i)$ $\forall (i, i') \in E : h_{i,i'} \ge 0 \quad (\gamma_{i,i'})$ $\forall i \in I, j \in J : q_{i,j} \ge 0 \quad (\mu_{i,j})$ $\forall i \in I, j \in J : q_{i,j} \leq \bar{q} \quad (\nu_{i,j}).$ (6)

33/46

Intrinsic Market Power

Efficient regulations and mechanism design

100 nodes network



34/46

Intrinsic Market Power

Efficient regulations and mechanism design

The ISO Problem: two-node case

Given that each generator reveals a cost c_i , the ISO solves:

$$\begin{array}{ll} \min_{q,h} & \sum_{i=1}^{2} c_{i}q_{i} \\ s.t. & q_{i}-h_{i}+h_{-i} \geq \frac{r}{2}[h_{1}^{2}+h_{2}^{2}]+d \ \ \text{for} \ \ i=1,2 \\ & q_{i},h_{i} \geq 0 \ \ \text{for} \ \ i=1,2 \end{array}$$

<ロ><部</p>
<ロ><部</p>
<10</p>
<1

Intrinsic Market Power

Efficient regulations and mechanism design

The Solution for ISO problem

If we define

$$H(x,y) = d + \frac{1}{2r} \left(\frac{x-y}{x+y}\right)^2 - \frac{1}{r} \left(\frac{x-y}{x+y}\right)$$

and

$$\overline{q} = 2\left[\frac{1-\sqrt{1-2dr}}{r}\right]$$

then the solution to this problem can be written as

$$\begin{split} q_i(c_i,c_{-i}) &= \begin{cases} H(c_i,c_{-i}) & \text{if } H(c_i,c_{-i}) \geq 0 \text{ and } H(c_{-i},c_i) \geq 0 \\ \overline{q} & \text{if } H(c_{-i},c_i) < 0 \\ 0 & \text{if } H(c_i,c_{-i}) < 0 \\ \lambda_i(c_i,c_{-i}) \equiv p_i(c_i,c_{-i}) = c_i & \text{if } H(c_i,c_{-i}) \geq 0 \end{cases} \end{split}$$

36/46

Intrinsic Market Power

Efficient regulations and mechanism design

The benchmark game

The Bayesian Game: benchmark

The game:

- 2 players. Strategies $c_i \in C_i = [\underline{c}_i, \overline{c}_i]$, i=1,2.
- Payoff $u_i(c_i, c_{-i}) = (\lambda_i(c_i, c_{-i}) \mathbf{c}_i)q_i(c_i, c_{-i}),$

where \mathbf{c}_i is the real cost. The Equilibrium:

- A strategy $b_i : [\underline{c}_i, \overline{c}_i] \longrightarrow \mathbb{R}^+$ (convex at equilibrium!)
- In a Nash equilibrium

$$\bar{b}(c) \in \arg\max_{x} \int_{C_{-i}} [\lambda_i(x, \bar{b}(c_{-i})) - c] q_i(x, \bar{b}(c_{-i})) f_{-i}(c_{-i}) dc_{-i}$$
(7)

Intrinsic Market Power

Efficient regulations and mechanism design

The benchmark game

Numerical Approximation

- For simplicity $C_i = [1, 2]$.
- Let $k \in \{0, ..., n-1\}$, and $b(c) = b_k$ for $c \in [\frac{k}{n}, \frac{k+1}{n}]$.
- The weight of each interval is given by $w_k = F(\frac{k+1}{n}) F(\frac{k}{n}).$
- The approximate equilibrium is characterized by:

$$b_k \in \arg \max_x \sum_{l=0}^{n-1} [\lambda_i(x, b_l) - r_k] q_i(x, b_l) w_l \quad \text{for all} \quad k \in \{0, ..., n-1\}$$
(8)

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の < () 38/46

The benchmark game

Optimal Mechanism. Principal Agent Model (Myerson)

- A direct revelation mechanism M = (q, h, x) consists of an assignment rule $(q_1, q_2, h_1, h_2) : C \longrightarrow R^4$ and a payment rule $x : C \longrightarrow R^2$.
- The ex-ante expected profit of a generator of type c_i when participates and declares c'_i is

$$U_i(c_i, c'_i; (q, h, x)) = E_{c_{-i}}[x_i(c'_i, c_{-i}) - c_i q_i(c'_i, c_{-i})]$$

• A mechanism (q, h, x) is feasible iff:

 $\begin{array}{rcl} U_i(c_i,c_i;(q,h,x)) &\geq & U_i(c_i,c_i';(q,h,x)) & \text{for all } c_i,c_i' \in C_i \\ U_i(c_i,c_i;(q,h,x)) &\geq & 0 & \text{for all } c_i \in C_i \\ q_i(c) - h_i(c) + h_{-i}(c) &\geq & \frac{r}{2}[h_1^2(c) + h_2^2(c)] + d & \text{for all } c \in C \\ q_i(c),h_i(c) &\geq & 0 & \text{for all } c \in C \end{array}$

Intrinsic Market Power

Efficient regulations and mechanism design

The benchmark game

The Regulator's Problem

Using the revelation principle, the regulator's problem can be written as:

$$\min \int_{C} \sum_{i=1}^{2} x_{i}(c) f(c) dc$$
(9)
subject to (q, h, x) being "feasible"

Existence: Knuster-Tarski fixed point theorem (monotone relations)

Intrinsic Market Power

Efficient regulations and mechanism design

The benchmark game

The Regulator's Problem (II)

It can be rewritten as

$$\begin{array}{ll} \min & \int_{C} \sum_{i=1}^{2} q_{i}(c) [c_{i} + \frac{F_{i}(c_{i})}{f_{i}(c_{i})}] f(c) dc \\ \text{s.t} & \int_{C_{-i}} q_{i}(c_{i}, c_{-i}) f_{-i}(c_{-i}) dc_{-i} \text{ is non-increasing in } c_{i} \\ & q_{i}(c) - h_{i}(c) + h_{-i}(c) \geq \frac{r}{2} [h_{1}^{2}(c) + h_{2}^{2}(c)] + d \text{ for all } c \in C \\ & q_{i}(c), h_{i}(c) \geq 0 \text{ for all } c \in C \end{array}$$

We denote by $J_i(c_i) = c_i + \frac{F_i(c_i)}{f_i(c_i)}$ the virtual cost of agent *i*. We assume it is increasing (Monotone likelihood ratio property: true for any log concave distribution)

Outline	Introduction and motivation	Modeling Market	Intrinsic Market Power	Efficient regulations and mechanism design
The benchmark game				
Soli	ution			

An optimal mechanism is given by

$$\begin{split} \hat{q}_i(c_i,c_{-i}) &= \begin{cases} H(J_i(c_i),J_{-i}(c_{-i})) & \text{if } H(J_i(c_i),J_{-i}(c_{-i})) \geq 0 \\ \overline{q} & \text{if } H(J_{-i}(c_{-i}),J_i(c_i)) < 0 \\ 0 & \text{if } H(J_i(c_i),J_{-i}(c_{-i})) < 0 \end{cases} \\ \hat{x}_i(c_i,c_{-i}) &= c_i \hat{q}_i(c_i,c_{-i}) + \int_{c_i}^{\overline{c}_i} \hat{q}_i(s,c_{-i}) ds \end{split}$$

Such mechanism is dominant strategy incentive compatible.

Intrinsic Market Power

Efficient regulations and mechanism design

Comparing Benchmark with Optimal Mechanism

Comparing Benchmark with Optimal Mechanism

We consider the family of distributions with densities

$$f_a(x) = \begin{cases} a(x-1) + (1 - \frac{a}{4}) & \text{if } x \le 1.5\\ -a(x-1) + (1 + \frac{3a}{4}) & \text{if } x \ge 1.5 \end{cases}$$

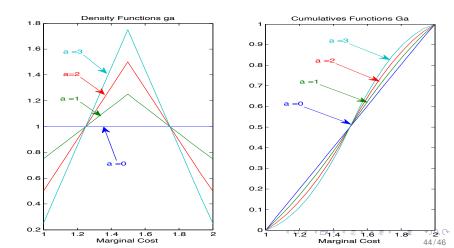
4 ロ ト 4 団 ト 4 三 ト 4 三 ト 三 の Q ()
43/46
43/46

Intrinsic Market Power

Efficient regulations and mechanism design

Comparing Benchmark with Optimal Mechanism

Asymmetric information

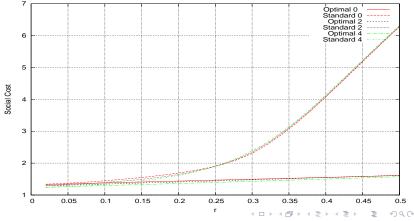


Modeling Market Intrinsic Market Power

Efficient regulations and mechanism design 000000

Comparing Benchmark with Optimal Mechanism

Social costs for different mechanisms



45/46

Efficient regulations and mechanism design

イロト イポト イヨト イヨト

Comparing Benchmark with Optimal Mechanism

Robustness and Practical Implementation

• The optimal mechanism is detail free. If the designer is wrong about common beliefs, then the mechanism is still not bad:

$$||X_f - X_{\tilde{f}}|| \le ||x||_1 ||f - \tilde{f}||_{\infty} \le \bar{c}\bar{q}||f - \tilde{f}||_{\infty}$$

- The assignment rule is computationally simple to implement. It requires solving **once** the dispatcher problem, with modified costs.
- However, the payments are computationally difficult

$$c_i \hat{q}_i(c_i, c_{-i}) + \int_{c_i}^{\overline{c}_i} \hat{q}_i(s, c_{-i}) ds$$

Comparing Benchmark with Optimal Mechanism

- Bagh, Adib; Jofre, Alejandro. Weak reciprocally upper-semicontinuity and better reply secure games: A comment. *Econometrica*, Vol. 74 Issue 6 (2006), 1715-1721.
- Figueroa, N. Jofre, A. and Heymann B. Cost-Minimizing regulations for a wholesale electricity market. Submitted (2015)
- Heymann B. and Jofre, A. Mechanism design and allocation algorithms for network markets with piece-wise linear costs and quadratic externalities. (2016)
- Escobar, Juan and Jofre, Alejandro. Monopolistic Competition in Electricity Markets. *Economics Theory*, 44, Number 1, 101-121 (2010)
- Escobar, Juan and Jofre, Alejandro. Equilibrium analysis of electricity auctions. Submitted.

Efficient regulations and mechanism design

Comparing Benchmark with Optimal Mechanism

Escobar, Juan F.; Jofre, Alejandro. Equilibrium analysis for a network market model. Robust optimization-directed design, 63–72, Nonconvex Optim. Appl., 81, Springer, New York, (2006).