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Renewables Making Headlines
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Germany: Nuclear power plants to close
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Denmark aims for 100 percent
renewable energy in 2050
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California to nearly double wind, solar
energy output by 2020 -regulator
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Uncertainty

Could you predict the energy production for this wind park
either day-ahead or 5 hours in advance?

Each Day is a different color.
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Variability

Variability of wind and solar resources - June 24,

2010

Variability in Wind and Solar
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A 150 MW wind plant and a 24 MW solar resource
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Unit Commitment under Uncertainty

Uncertainty:
renewable supply,
contingencies

Recourse:
generator dispatch,
demand response,

transmission control,
storage

Unit
commitment

o~ ~
A=

Appropriate for modeling various balancing options:
@ Demand (deferrable, price responsive, wholesale)
@ Storage (pumped hydro, batteries)
@ Transmission control (FACTS, tap changers, switching)
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Parallel Computing Literature in Power Systems

@ Monticelli et al. (1987): Benders decomposition algorithm
for SCOPF

@ Pereira et al. (1990): Various applications of parallelization
including SCOPF, composite (generator, transmission line)
reliability, hydrothermal scheduling

@ Falcao (1997): Survey of HPC applications in power
systems
@ Kim, Baldick (1997): Distributed OPF

@ Bakirtzis, Biskas (2003) and Biskas et al. (2005):
Distributed OPF
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Full Model

@ Application: stochastic unit commitment for large-scale
renewable energy integration

@ Two-stage model representing DA market (first stage)
followed by RT market (second stage)

Outcomes Scenario
selection

Representative
outcomes
Stochastic UC Min load,
Stochastic model startup,
renewable energy,| fuel cost
demand,
contingencies)

Slow gen UC

schedule
L >
Outcomes

Economic
dispatch
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Unit Commitment Model

@ Domain D represents min up/down times, ramping rates,
thermal limits of lines, reserve requirements

@ Generator set partitioned between fast (Gy) and slow (Gs)
generators

geGteT

9eGn
Py ugt < pgt < Py ugt
er = Bi(Ont — Omt)
(p,e,u,v) € D
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Stochastic Unit Commitment Model

(SUC) : min Z Z ZWS(KQUgSt + Sngst + Cgpgst)
geGseSteT

s.t. Z Pgst = Dnst,
9€Gn
PgsUgst < Pgst < P;gugst
€ist = Bis(Onst — Omst)
(p,e,u,v) € Dg
Ugst = Wgt, Vgst = Zgt, 9 € Gs
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Lagrangian Decomposition Algorithm

@ Past work: (Takriti et al., 1996), (Carpentier et al., 1996),
(Nowak and Rémisch, 2000), (Shiina and Birge, 2004)

@ Key idea: relax non-anticipativity constraints on both unit
commitment and startup variables

@ Balance size of subproblems
@ Obtain lower and upper bounds at each iteration

Lagrangian:
L= Z Z Z ms(KgUgst + SgVgst + CgPgst)
geGseSteT

+ Z Z Z 7s(pgst(Ugst — Wt) + vgst(Vgst — Zgt))

geGs seS teT
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Model
Parallelization

ng( vgs(
Dual multiplier
update

Second-stage
subproblems P2

Monte Carlo
economic dispatch ED

First-stage
subproblem P1

Zg Wy

Second-stage
feasibility runs ED ¢

@ Lawrence Livermore National Laboratory Hera cluster:
13,824 cores on 864 nodes, 2.3 Ghz, 32 GB/node
@ MPI calling on CPLEX Java callable library
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Model
Scenario Selection

@ Past work: (Growe-Kuska et al., 2002), (Dupacova et al.,
2003), (Heitsch and Rémisch, 2003), (Morales et al., 2009)
@ Scenario selection algorithm inspired by importance
sampling
@ Generate a sample set Qs C Q, where M = |Qg| is

adequately large. Calculate the cost Cp(w) of each sample
w € Qg against the best deterministic unit commitment

CD Wl)

policy and the average cost C = Z
i=1
@ Choose N scenarios from Qg, where the probability of
picking a scenario w is Cp(w)/(MC).
© Set s = Cp(w)~! forall w® € Q.
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California Case Study

WECC Model
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California Case Study
Unit Characteristics

Type No. of units | Capacity (MW)
Nuclear 2 4,499
Gas 94 20,595.6
Coal 6 285.9

Qil 5 252

Dual fuel 23 4,599
Import 22 12,691
Hydro 6 10,842
Biomass 3 558
Geothermal | 2 1,193
Wind (deep) | 10 14,143
Fast thermal | 88 11,006.1
Slow thermal | 42 19,225.4
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California Case Study
Model Size

Model Gens | Buses | Lines | Periods | Scens.
CAISO1000 | 130 225 375 24 1000
WILMAR 45 N/A N/A 36 6
PJM 1011 | 13867 | 18824 24 1
CWE120 656 679 1037 96 120
Model Integer var. | Cont. var. | Constraints
CAISO1000 | 3,121,800 | 20,643,120 | 66,936,000
WILMAR 16,000 151,000 179,000
PJM 24,264 833,112 1,930,776
CWE120 1,152,768 | 53,337,600 | 64,728,720

A. Papavasiliou & |. Aravena

Solving stochastic unit commitment with HPC




California Case Study
Wind Production Model

@ Relevant literature: (Brown et al, 1984), (Torres et al.,
2005), (Morales et al, 2010)

@ Calibration steps
@ Remove systematic effects:

s Yut — [mt

ykf &kmt

@ Transform data to obtain a Gaussian distribution:
&S =N (Fi(yd))-

© Estimate the autoregressive parameters q@k/ and covariance
matrix ¥ using Yule-Walker equations.

A. Papavasiliou & |. Aravena Solving stochastic unit commitment with HPC



California Case Study

Data Fit
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California Case Study

Number of Scenarios Versus Optimality Gap

@ A large number of scenarios:
e results in a more accurate representation of uncertainty
e increases the amount of time required in each iteration of
the subgradient algorithm
@ A smaller optimality gap implies that the relaxation is
‘closer’ to an optimal solution

@ Given a time budget (a few hours at best in day-ahead
operations), do we want to solve a more representative
problem less accurately or a less representative problem
more accurately?
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California Case Study

Cost Ranking: Summer Weekdays

SummerWD
12200000

12100000 ES S S .
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@ S = 1000 corresponds to sample average approximation
algorithm

@ Average daily cost and one standard deviation for 1000
Monte Carlo outcomes

Daily cost ($)
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California Case Study
Influence of Duality Gap

@ Among three worse policies in summer, S = 1000 with G =
2%, 2.5%

@ Best policy for all day types has a 1% optimality gap
(S = 1000 only for spring)

@ For all but one day type the worst policy has G = 2.5%
@ For spring, best policy is G=1,S = 1000

@ For spring, summer and fall the worst policy is the one with
the fewest scenarios and the greatest gap, namely
G=25,S=10
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California Case Study

Validation of Scenario Selection Policy

@ Top performance for winter, summer and fall is attained by
proposed scenario selection algorithm based on
importance sampling

@ For all day types, the importance sampling algorithm
results in a policy that is within the top 2 performers

@ Satisfactory performance (within top 3) can be attained by
models of moderate scale (S50), provided an appropriate
scenario selection policy is utilized
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California Case Study

Run Time Ranking: Summer Weekdays

SummerWD
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California Case Study
How Many Scenarios?

@ Depends on the amount of available computation time and
the number of available computational resources

@ No guarantee that a smaller gap for the same instance will
deliver a better result (compare, for example, the case of
G = 2 with the case of G = 2.5 for S = 10 for winter
weekdays). Nevertheless, it is commonly preferable to
decrease the duality gap as much as possible
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California Case Study

Running Times: Winter Weekdays

Gap=1%, WinterWD

Gap=1.5%, WinterWD

)

Y

48
40
36
0 30 -0-p=10 0
s 20 DO :g: %
T ~#—-P=100
10 P=1000 12
0 0
s10 S50 5100 51000 S10
Gap=2%, WinterWD
48 48
36 36
=0-P=10
2 ¢
g 24 -0-p=50 324
T T
=&=P=100
12 12
P=1000
0 T 0
510 S50 5100 51000 s10

Solving stochastic unit commitment with HPC

S50 5100 51000

Gap=2.5%, WinterWD

/-

S50 $100 $1000

-0-p=10
-0-p=50
~4-Pp=100

P=1000

-0-p=10
—0-p=50
~—P=100

P=1000




California Case Study

Unit Commitment: Winter Weekdays

WinterWD
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California Case Study

Bounds: Summer Weekdays

SummerWD
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European Case Study

Central Western European Case Study
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European Case Study

Asynchronous algorithm

@ Synchronous method requires the evaluation of all
scenario subproblems for current multipliers p*, v in order
to perform a new subgradient iteration

@ Certain scenario subproblems can take up to 75 times
more running time than others (more than 12 hours for
hard subproblems compared to 10’ for easy subproblems)

@ Idea: use simpler algorithms for which each iteration
requires to evaluate only part of the dual function

@ Relevant literature: (Bertsekas & Tsitsiklis, 1989), (Tseng,
2001), (Nedi¢ et al., 2001), (Kiwiel, 2004), (Fercoq &
Richtarik, 2013), (Liu et al., 2014)
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European Case Study

Proposed scheme

Dual Primal
Subproc. s1 Recovery 1
k—1  k—1
k—1
LBpy_g ul, s; -
Dual «——— | Coordinating | ————» Primal
Subproc. 6 ﬁl/' Process ‘\l—/ Recovery j
“()+ 7”0+ J UB'(s;)
LB””’,ul
Dual Primal
Subproc. sn Recovery m

Note: 1%, vk are maintained within Dual Sub-process 6
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European Case Study
Standard coordinate descent iteration

@ K(0): current iteration in sub-process 6
@ Dual Sub-process ¢:
e Evaluates subproblem P2 for scenario 6 with current
multipliers ug(g), u§(9>
e Evaluates P1 with current full multipliers

K k(6 K(sn
o= (s @ )
V= (1/1;(31), ... ,Vg(e), .. .,u’gfs"))

e Computes block-coordinate subgradient update on p, vg

@ Problem: dual function is never fully evaluated —
impossibility to compute lower bounds
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European Case Study

Modified dual iterations

@ Dual Sub-process ¢:
e Evaluates subproblem P2 for scenario 6 with the current

multipliers ug( ) ) Lsz(e

e Evaluates P1 with delayed multipliers g, v — LB,’;(f)

— k — k k(sn)—
o= (s @ ey
o= (WEETT KO ke

e Computes block-coordinate subgradient update on p,, vy
e Computes lower bound on objective using last
evaluations of P2 subproblems for other scenarios,

Objective > LB + LBy, + > LBEy: !
S#0
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European Case Study

Lower bound initialization

@ Certain scenario subproblems can take up to 75 times
more than others to be solved — one scenario can delay
the computation of the first “full” lower bound

@ Use a relaxation of P2 to obtain an initial lower bound (not
useful for updating dual multipliers)
@ Which relaxation?

e Linear relaxation of P2
e Sequence of OPFs problems
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European Case Study
Primal recovery

@ Recovering primal candidates (1st stage) from P2
subproblems — good quality solutions from first iterations,
(Ahmed, 2013)

@ Accumulating large number of primal candidates: prune
bad candidates if possible

e Pruning candidates based on cuts from (Angulo et al.,

2014)
e Second stage cost non-increasing function of u:
u >u = C(u') < Cy(W), hence

LB(u™") = Cy(u™") + TE%X Co (W)

Ui > ynew

@ Asynchronous evaluation of 2nd stage cost for candidates
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European Case Study
Implementation details

@ Implemented in Mosel using the mmjobs module and the
XPress solver

@ Offline self-tuning of solver parameters for solving P2
subproblems can save up 30% of solution time

@ Lawrence Livermore National Laboratory Sierra cluster:
23,328 cores on 1,944 nodes, 2.8 Ghz, 24 GB/node

@ Using 10 nodes per SUC instance, multiple subproblems
per node
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European Case Study

Implementation details

@ 5 nodes dedicated to dual iterations / 6 sub-processes per node
(due to subproblem P2 memory requirements)

@ 5 nodes dedicated to primal recovery / 12 primal recovery
scenario sub-problems per node
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European Case Study
Central Western European Model

@ 87 nuclear units (85GW),
144 CHP units (40GW),
272 SLOW units (99GW),
126 FAST units (14GW)
and 27 aggregated
generators (10GW) Sy

@ CWE grid model, Fone!
Hutcheon & Bialek, 2013
7 countries, 679 nodes,
1073 lines
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European Case Study
Renewable energy production profiles

@ Multiarea renewable production and demand with 15’ time
resolution for 2013-2014 collected from national TSOs

@ Using typical profiles + forecast errors to generate
representative profiles
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European Case Study
Simulation setting

@ Comparing 5 day-ahead scheduling models:

e Deterministic UC with secondary and tertiary reserves,
Determ2R

e Deterministic UC with primary, secondary and tertiary
reserves, Determ3R

e Stochastic UC with 30, 60 and 120 scenarios; Stoch30,
Stoch60 and Stoch120

@ Fixed commitment for NUCLEAR and CHP. No commitment
decision associated with AGGREGATED generators.

@ 8 day types: 4 seasons x weekdays/weekends

@ Using scenario reduction based on probability metrics, (Heitsch
& Rdmisch, 2007)
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European Case Study

Central Western European Model instances

Model Scenarios | Variables | Constraints | Integers
Determ2R 1 570,432 655,784 9,552
Determ3R 1 636,288 719,213 9,652
Stoch30 30 13,334,400 | 16,182,180 | 293,088
Stoch60 60 26,668,800 | 32,364,360 | 579,648
Stoch120 120 53,337,600 | 64,728,720 | 1,152,768

A. Papavasiliou & |. Aravena
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European Case Study
Running times

Solution statistics over 8 instances (day types).

Model Nodes | Running time [hours] | Worst final gap [%)]
Determ2R 1 1.9(0.6-4.2) 0.95
Determ3R 1 13 6 (6.3-27.9) 1.12
Stoch30' 10 1(0.7-2.2) 0.93
Stoch30i? 10 8 (0.3-1.8) 1.00
Stoch60’ 10 2(1.1-8.4) 1.00
Stoch60i? 10 5(0.6—4.7) 0.97
Stoch120" 10 6. (1.6 —15.0) 1.00
Stoch120i? 10 3.0 (1.4-10.0) 1.07

! Dual initialization using linear relaxation of P2
2 Dual initialization using sequential OPF
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European Case Study

Deterministic or Stochastic UC?

Model Nodes | Running time [hours] | Worst final gap [%)]
Determ2R 1 1.9 (0.6 -4.2) 0.95
Determ3R 1 13.6 (6.3 -27.9) 1.12
Stoch60i 10 1.5(0.6 —4.7) 0.97

@ For a large-scale power system, HPC enables solving SUC
within the running time of a state-of-the-art MILP solver for
DUC with reserves

@ Stochastic UC provides cheaper and more reliable
schedules, without the need for exogenous reserve targets

@ Good news: we can choose Stochastic UC!
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European Case Study

Stochastic UC: Optimality Vs. Wall-Time

Solution statistics over 8 instances (day types).

Model Worst gap [%]

1 hour | 2 hours | 4 hours | 8 hours
Stoch30 7.59 1.02 0.93 -
Stoch30i 1.90 1.00 - -
Stoch60 23.00 5.32 5.22 4.50
Stoch60i 4.60 1.57 1.03 0.97
Stoch120 | 70.39 | 31.66 4.61 1.87
Stoch120i | 46.69 | 27.00 1.42 1.07

@ Lower bound initialization using sequential OPF
demonstrates to be very effective, sometimes avoiding to
solve P2 for hard scenarios

@ Asynchronous SUC algorithm capable of achieving
acceptable optimality gaps within operational time frames
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European Case Study

Room for Improvement: Primal Candidate Evaluation

Bounds and primal candidates.
Stoch120i, 5 dual — 5 primal nodes, summer weekday.

100.0% 1000

10.0% 100

Gap [%)]
Number of primal candidates

0 2 4 6 8 10
Time [hours]

Optimallity gap Total candidates Evaluated candidates

@ Primal candidates pruning is not effective: discards less
than 1% of candidates

@ Valuable computational resources spent in detailed
evaluation of sub-optimal candidates
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European Case Study

Using More Computational Power...

Solution statistics for Stoch120i over 8 instances.
Nodes Running Worst gap [%]
time [hours] 1 hour | 2 hours | 4 hours | 8 hours
5D,5P | 3.0(1.4—-10.0) | 46.69 | 27.00 1.42 1.07
5D,10P | 2.0(1.3—-4.1) | 46.04 | 25.51 1.04 1.00

@ More cluster nodes dedicated to primal evaluation (P) can
significantly reduce running times

@ Analogous effect to use a more effective pruning
mechanism — direction for further research

A. Papavasiliou & |. Aravena Solving stochastic unit commitment with HPC



European Case Study

Application: Policy Analysis on CWE System

@ Comparing different policy designs for day-ahead and
real-time energy markets in the Central Western European
network

e Zonal day-ahead market and limited real-time coordination
between zones, ZonalDA-LimRT

e Zonal day-ahead market and complete real-time
coordination between zones, ZonalDA-ComRT

e Centralized deterministic UC in day-ahead and complete
real-time coordination, Deterministic UC

e Centralized stochastic UC in day-ahead and complete
real-time coordination, Stochastic UC

@ High levels of renewable energy currently integrated in the
system: 51.2 GW of wind power and 47.3 GW solar power
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European Case Study
Policy Analysis Results

Expected policy costs and efficiency losses with respect to deterministic UC

Policy Expected cost | Efficiency | Efficiency losses
[MM€/d] losses [%] [MM<€/year]
ZonalDA-LimRT 30.49 6.0 631
ZonalDA-ComRT 29.56 2.8 295
Deterministic UC 28.76 - -
Stochastic UC 28.49 -0.9 -96

@ Zonal day-ahead market ignores congestion within zones
leading to increased operation costs

@ Small efficiency gains of stochastic UC compared to
efficiency losses due to zonal day-ahead market design

A. Papavasiliou & |. Aravena Solving stochastic unit commitment with HPC



Conclusions
Conclusions

@ Validation of scenario selection algorithm: The
importance sampling scenario selection algorithm
performs favorably relative to SAA with 1000 scenarios

@ Decreasing the duality gap versus increasing the
number of scenarios: Reducing the duality gap seems to
yield comparable benefits relative to adding more
scenarios

@ Efficiency gains: All problems solved within 24 hours,
given enough processors. Parallelization permits the
running time of the studied model to run within acceptable
time frames from operations standpoint.
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Conclusions
Conclusions

@ Asynchronous algorithm and HPC: Potential to solve
stochastic UC within the same time frame required to solve
deterministic UC using a state-of-the-art MILP solver

@ Lower bound initialization: Sequential OPF provides fast
lower bounds, significantly reducing running times.

@ Primal recovery scheme: Obtaining good primal
candidates from first iterations drastically accelerates the
convergence of the algorithm. Nevertheless, large
scenario instances lead to a large number of sub-optimal
candidates that could potentially be pruned.
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Conclusions
Perspectives

@ Extensions of present model

e Comparison of alternative relaxations
e Analysis of duality gap

@ Extensions of asynchronous algorithm
e Pruning and scoring candidates based on bounds for ED
subproblems
e Dynamical queue management for dual and primal
processes
e Multi-stage stochastic UC
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Conclusions
Thank you

Questions?
Contact: anthony.papavasiliou@uclouvain.be

http://perso.uclouvain.be/anthony.papavasiliou/public_html/

A. Papavasiliou & |. Aravena Solving stochastic unit commitment with HPC



	Model
	California Case Study
	WECC Model
	Wind Production Model
	Results

	European Case Study
	Asynchronous Algorithm
	CWE model
	Results

	Conclusions

