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Renewables Making Headlines
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Uncertainty
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Variability
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Unit Commitment under Uncertainty

Unit 

commitment

Recourse:

generator dispatch, 

demand response,

transmission control,

storage

Uncertainty:

renewable supply,

contingencies

Appropriate for modeling various balancing options:
Demand (deferrable, price responsive, wholesale)
Storage (pumped hydro, batteries)
Transmission control (FACTS, tap changers, switching)
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Parallel Computing Literature in Power Systems

Monticelli et al. (1987): Benders decomposition algorithm
for SCOPF
Pereira et al. (1990): Various applications of parallelization
including SCOPF, composite (generator, transmission line)
reliability, hydrothermal scheduling
Falcao (1997): Survey of HPC applications in power
systems
Kim, Baldick (1997): Distributed OPF
Bakirtzis, Biskas (2003) and Biskas et al. (2005):
Distributed OPF

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC



Model California Case Study European Case Study Conclusions

Full Model

Application: stochastic unit commitment for large-scale
renewable energy integration
Two-stage model representing DA market (first stage)
followed by RT market (second stage)

Stochastic model
(renewable energy,

demand,
contingencies)

Scenario 
selection

Stochastic UC

Economic 
dispatch

Outcomes

Representative 
outcomes

Slow gen UC 
schedule

Outcomes

Min load, 
startup, 
fuel cost
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Unit Commitment Model

Domain D represents min up/down times, ramping rates,
thermal limits of lines, reserve requirements
Generator set partitioned between fast (Gf ) and slow (Gs)
generators

(UC) : min
∑
g∈G

∑
t∈T

(Kgugt + Sgvgt + Cgpgt )

s.t .
∑

g∈Gn

pgt = Dnt

P−g ugt ≤ pgt ≤ P+
g ugt

elt = Bl(θnt − θmt )

(p,e,u,v) ∈ D
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Stochastic Unit Commitment Model

(SUC) : min
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst )

s.t .
∑

g∈Gn

pgst = Dnst ,

P−gsugst ≤ pgst ≤ P+
gsugst

elst = Bls(θnst − θmst )

(p,e,u,v) ∈ Ds

ugst = wgt , vgst = zgt ,g ∈ Gs
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Lagrangian Decomposition Algorithm

Past work: (Takriti et al., 1996), (Carpentier et al., 1996),
(Nowak and Römisch, 2000), (Shiina and Birge, 2004)
Key idea: relax non-anticipativity constraints on both unit
commitment and startup variables

1 Balance size of subproblems
2 Obtain lower and upper bounds at each iteration

Lagrangian:

L =
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst )

+
∑

g∈Gs

∑
s∈S

∑
t∈T

πs(µgst (ugst − wgt ) + νgst (vgst − zgt ))
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Parallelization

z gt
*

v gst
*

wgt
*

gst gst

gst
*u

Dual multiplier 
update

Second-stage 
subproblems P2 s

1 2 N s
.  .  .  .

P1
First-stage 
subproblem

Second-stage 
feasibility runs ED s

1 2 N s
.  .  .  .

N c1 2 .  .  .  .

Monte Carlo 
economic dispatch ED

c

Lawrence Livermore National Laboratory Hera cluster:
13,824 cores on 864 nodes, 2.3 Ghz, 32 GB/node
MPI calling on CPLEX Java callable library
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Scenario Selection

Past work: (Gröwe-Kuska et al., 2002), (Dupacova et al.,
2003), (Heitsch and Römisch, 2003), (Morales et al., 2009)
Scenario selection algorithm inspired by importance
sampling

1 Generate a sample set ΩS ⊂ Ω, where M = |ΩS| is
adequately large. Calculate the cost CD(ω) of each sample
ω ∈ ΩS against the best deterministic unit commitment

policy and the average cost C̄ =
M∑

i=1

CD(ωi )

M
.

2 Choose N scenarios from ΩS, where the probability of
picking a scenario ω is CD(ω)/(MC̄).

3 Set πs = CD(ω)−1 for all ωs ∈ Ω̂.
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WECC Model

Arizona

Utah

Idaho
Wyoming

Montana

Washington
Oregon

Canada
Humboldt

Nevada

North 
Valley

LADWP

Orange 
County

San
Diego

Imperial 
Valley

Sierra

East Bay

North Coast/
Geysers

Fresno

San
Francisco

South
Bay

ZP26
(Central
Coast)

So Cal Edison
(Other)

Mexico

Eight day types: one per weekday/weekend × season
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Unit Characteristics

Type No. of units Capacity (MW)
Nuclear 2 4,499
Gas 94 20,595.6
Coal 6 285.9
Oil 5 252
Dual fuel 23 4,599
Import 22 12,691
Hydro 6 10,842
Biomass 3 558
Geothermal 2 1,193
Wind (deep) 10 14,143
Fast thermal 88 11,006.1
Slow thermal 42 19,225.4
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Model Size

Model Gens Buses Lines Periods Scens.
CAISO1000 130 225 375 24 1000

WILMAR 45 N/A N/A 36 6
PJM 1011 13867 18824 24 1

CWE120 656 679 1037 96 120

Model Integer var. Cont. var. Constraints
CAISO1000 3,121,800 20,643,120 66,936,000

WILMAR 16,000 151,000 179,000
PJM 24,264 833,112 1,930,776

CWE120 1,152,768 53,337,600 64,728,720
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Wind Production Model

Relevant literature: (Brown et al, 1984), (Torres et al.,
2005), (Morales et al, 2010)
Calibration steps

1 Remove systematic effects:

yS
kt =

ykt − µ̂kmt

σ̂kmt
.

2 Transform data to obtain a Gaussian distribution:

yGS
kt = N−1(F̂k (yS

kt )).

3 Estimate the autoregressive parameters φ̂kj and covariance
matrix Σ̂ using Yule-Walker equations.
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Data Fit
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Number of Scenarios Versus Optimality Gap

A large number of scenarios:
results in a more accurate representation of uncertainty
increases the amount of time required in each iteration of
the subgradient algorithm

A smaller optimality gap implies that the relaxation is
‘closer’ to an optimal solution
Given a time budget (a few hours at best in day-ahead
operations), do we want to solve a more representative
problem less accurately or a less representative problem
more accurately?

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Cost Ranking: Summer Weekdays

S = 1000 corresponds to sample average approximation
algorithm
Average daily cost and one standard deviation for 1000
Monte Carlo outcomes
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Influence of Duality Gap

Among three worse policies in summer, S = 1000 with G =
2%, 2.5%
Best policy for all day types has a 1% optimality gap
(S = 1000 only for spring)
For all but one day type the worst policy has G = 2.5%

For spring, best policy is G = 1,S = 1000
For spring, summer and fall the worst policy is the one with
the fewest scenarios and the greatest gap, namely
G = 2.5,S = 10
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Validation of Scenario Selection Policy

Top performance for winter, summer and fall is attained by
proposed scenario selection algorithm based on
importance sampling
For all day types, the importance sampling algorithm
results in a policy that is within the top 2 performers
Satisfactory performance (within top 3) can be attained by
models of moderate scale (S50), provided an appropriate
scenario selection policy is utilized
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Run Time Ranking: Summer Weekdays

Best-case running times (S = P)
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How Many Scenarios?

Depends on the amount of available computation time and
the number of available computational resources
No guarantee that a smaller gap for the same instance will
deliver a better result (compare, for example, the case of
G = 2 with the case of G = 2.5 for S = 10 for winter
weekdays). Nevertheless, it is commonly preferable to
decrease the duality gap as much as possible
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Running Times: Winter Weekdays
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Unit Commitment: Winter Weekdays
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Bounds: Summer Weekdays
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Central Western European Case Study

France

Belgium

Switzerland

Netherlands

Germany

Austria
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Asynchronous algorithm

Synchronous method requires the evaluation of all
scenario subproblems for current multipliers µk ,νk in order
to perform a new subgradient iteration
Certain scenario subproblems can take up to 75 times
more running time than others (more than 12 hours for
hard subproblems compared to 10’ for easy subproblems)

Idea: use simpler algorithms for which each iteration
requires to evaluate only part of the dual function

Relevant literature: (Bertsekas & Tsitsiklis, 1989), (Tseng,
2001), (Nedić et al., 2001), (Kiwiel, 2004), (Fercoq &
Richtárik, 2013), (Liu et al., 2014)
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Proposed scheme

Coordinating
Process

Dual
Subproc. s1

Dual
Subproc. θ

Dual
Subproc. sn

Primal
Recovery 1

Primal
Recovery j

Primal
Recovery m

µk−1
−θ , νk−1

−θ ,

LBk−1
P2(−θ)

µk+1
θ

, νk+1
θ

,

LBk, ul

ul, sj

UBl(sj)

Note: µk
θ , ν

k
θ are maintained within Dual Sub-process θ
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Standard coordinate descent iteration

k(θ): current iteration in sub-process θ
Dual Sub-process θ:

Evaluates subproblem P2 for scenario θ with current
multipliers µ

k(θ)
θ ,ν

k(θ)
θ

Evaluates P1 with current full multipliers

µ :=
(
µ

k(s1)
s1 , . . . ,µ

k(θ)
θ , . . . ,µ

k(sn)
sn

)
ν :=

(
ν

k(s1)
s1 , . . . ,ν

k(θ)
θ , . . . ,ν

k(sn)
sn

)
Computes block-coordinate subgradient update on µθ,νθ

Problem: dual function is never fully evaluated→
impossibility to compute lower bounds
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Modified dual iterations

Dual Sub-process θ:
Evaluates subproblem P2 for scenario θ with the current
multipliers µ

k(θ)
θ ,ν

k(θ)
θ → LBk(θ)

P2(θ)

Evaluates P1 with delayed multipliers µ̄, ν̄ → LBk(θ)
P1

µ̄ :=
(
µ

k(s1)−1
s1 , . . . ,µ

k(θ)
θ , . . . ,µ

k(sn)−1
sn

)
ν̄ :=

(
ν

k(s1)−1
s1 , . . . ,ν

k(θ)
θ , . . . ,ν

k(sn)−1
sn

)
Computes block-coordinate subgradient update on µθ,νθ

Computes lower bound on objective using last
evaluations of P2 subproblems for other scenarios,

Objective ≥ LBk(θ)
P1 + LBk(θ)

P2(θ) +
∑
s 6=θ

LBk(s)−1
P2(s)

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC



Model California Case Study European Case Study Conclusions

Lower bound initialization

Certain scenario subproblems can take up to 75 times
more than others to be solved→ one scenario can delay
the computation of the first “full” lower bound

Use a relaxation of P2 to obtain an initial lower bound (not
useful for updating dual multipliers)
Which relaxation?

Linear relaxation of P2
Sequence of OPFs problems

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Primal recovery

Recovering primal candidates (1st stage) from P2
subproblems→ good quality solutions from first iterations,
(Ahmed, 2013)
Accumulating large number of primal candidates: prune
bad candidates if possible

Pruning candidates based on cuts from (Angulo et al.,
2014)
Second stage cost non-increasing function of u:
ui ≥ uj ⇒ C2(ui ) ≤ C2(uj ), hence

LB(unew) = C1(unew) + max
j∈J

uj≥unew

C2(uj )

Asynchronous evaluation of 2nd stage cost for candidates

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Implementation details

Implemented in Mosel using the mmjobs module and the
XPress solver
Offline self-tuning of solver parameters for solving P2
subproblems can save up 30% of solution time
Lawrence Livermore National Laboratory Sierra cluster:
23,328 cores on 1,944 nodes, 2.8 Ghz, 24 GB/node
Using 10 nodes per SUC instance, multiple subproblems
per node

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Implementation details

5 nodes dedicated to dual iterations / 6 sub-processes per node
(due to subproblem P2 memory requirements)

5 nodes dedicated to primal recovery / 12 primal recovery
scenario sub-problems per node

Coordinator

Primal (ED) Solver 1

Primal (ED) Solver 2

Primal (ED) Solver 3

Primal (ED) Solver 4

Primal (ED) Solver 5

Primal (ED) Solver 6

Primal (ED) Solver 7

Primal (ED) Solver 8

Primal (ED) Solver 9

Primal (ED) Solver 10

Primal (ED) Solver 11

Master Node (within Primal Nodes)

Dual (P2-P1) Solver i1

Dual (P2-P1) Solver i2

Dual (P2-P1) Solver i3

Dual (P2-P1) Solver i4

Dual (P2-P1) Solver i5

Dual (P2-P1) Solver i6

Dual Node i

Primal (ED) Solver j1

Primal (ED) Solver j2

Primal (ED) Solver j3

Primal (ED) Solver j4

Primal (ED) Solver j5

Primal (ED) Solver j6

Primal (ED) Solver j7

Primal (ED) Solver j8

Primal (ED) Solver j9

Primal (ED) Solver j10

Primal (ED) Solver j11

Primal (ED) Solver j12

Primal Node j
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Central Western European Model

87 nuclear units (85GW),
144 CHP units (40GW),
272 SLOW units (99GW),
126 FAST units (14GW)
and 27 aggregated
generators (10GW)
CWE grid model,
Hutcheon & Bialek, 2013
7 countries, 679 nodes,
1073 lines

France

Belgium

Switzerland

Netherlands

Germany

Austria
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Renewable energy production profiles

Multiarea renewable production and demand with 15’ time
resolution for 2013-2014 collected from national TSOs
Using typical profiles + forecast errors to generate
representative profiles

Time [hours]

S
to
ch
.
R
E
pr
o
d
u
ct
io
n
[G
W
]

0
10

20
30

40

0 2 4 6 8 10 13 16 19 22

12
0

13
0

14
0

15
0

16
0

D
et
er
m
.
n
et

d
em

an
d
[G
W
]

RE max. energy

RE min. energy

RE max. ramp

Demandg

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC



Model California Case Study European Case Study Conclusions

Simulation setting

Comparing 5 day-ahead scheduling models:

Deterministic UC with secondary and tertiary reserves,
Determ2R
Deterministic UC with primary, secondary and tertiary
reserves, Determ3R
Stochastic UC with 30, 60 and 120 scenarios; Stoch30,
Stoch60 and Stoch120

Fixed commitment for NUCLEAR and CHP. No commitment
decision associated with AGGREGATED generators.

8 day types: 4 seasons × weekdays/weekends

Using scenario reduction based on probability metrics, (Heitsch
& Römisch, 2007)

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Central Western European Model instances

Model Scenarios Variables Constraints Integers
Determ2R 1 570,432 655,784 9,552
Determ3R 1 636,288 719,213 9,552
Stoch30 30 13,334,400 16,182,180 293,088
Stoch60 60 26,668,800 32,364,360 579,648
Stoch120 120 53,337,600 64,728,720 1,152,768

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Running times

Solution statistics over 8 instances (day types).

Model Nodes Running time [hours] Worst final gap [%]
Determ2R 1 1.9 (0.6 – 4.2) 0.95
Determ3R 1 13.6 (6.3 – 27.9) 1.12
Stoch301 10 1.1 (0.7 – 2.2) 0.93
Stoch30i2 10 0.8 (0.3 – 1.8) 1.00
Stoch601 10 3.2 (1.1 – 8.4) 1.00
Stoch60i2 10 1.5 (0.6 – 4.7) 0.97
Stoch1201 10 6.1 (1.6 – 15.0) 1.00
Stoch120i2 10 3.0 (1.4 – 10.0) 1.07

1 Dual initialization using linear relaxation of P2
2 Dual initialization using sequential OPF

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Deterministic or Stochastic UC?

Model Nodes Running time [hours] Worst final gap [%]
Determ2R 1 1.9 (0.6 – 4.2) 0.95
Determ3R 1 13.6 (6.3 – 27.9) 1.12
Stoch60i 10 1.5 (0.6 – 4.7) 0.97

For a large-scale power system, HPC enables solving SUC
within the running time of a state-of-the-art MILP solver for
DUC with reserves
Stochastic UC provides cheaper and more reliable
schedules, without the need for exogenous reserve targets
Good news: we can choose Stochastic UC!

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Stochastic UC: Optimality Vs. Wall-Time

Solution statistics over 8 instances (day types).

Model Worst gap [%]
1 hour 2 hours 4 hours 8 hours

Stoch30 7.59 1.02 0.93 –
Stoch30i 1.90 1.00 – –
Stoch60 23.00 5.32 5.22 4.50
Stoch60i 4.60 1.57 1.03 0.97
Stoch120 70.39 31.66 4.61 1.87
Stoch120i 46.69 27.00 1.42 1.07

Lower bound initialization using sequential OPF
demonstrates to be very effective, sometimes avoiding to
solve P2 for hard scenarios
Asynchronous SUC algorithm capable of achieving
acceptable optimality gaps within operational time frames

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Room for Improvement: Primal Candidate Evaluation

Bounds and primal candidates.
Stoch120i, 5 dual – 5 primal nodes, summer weekday.
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Primal candidates pruning is not effective: discards less
than 1% of candidates
Valuable computational resources spent in detailed
evaluation of sub-optimal candidates
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Using More Computational Power...

Solution statistics for Stoch120i over 8 instances.
Nodes Running Worst gap [%]

time [hours] 1 hour 2 hours 4 hours 8 hours
5D, 5P 3.0 (1.4 – 10.0) 46.69 27.00 1.42 1.07

5D, 10P 2.0 (1.3 – 4.1) 46.04 25.51 1.04 1.00

More cluster nodes dedicated to primal evaluation (P) can
significantly reduce running times
Analogous effect to use a more effective pruning
mechanism→ direction for further research

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Application: Policy Analysis on CWE System

Comparing different policy designs for day-ahead and
real-time energy markets in the Central Western European
network

Zonal day-ahead market and limited real-time coordination
between zones, ZonalDA-LimRT
Zonal day-ahead market and complete real-time
coordination between zones, ZonalDA-ComRT
Centralized deterministic UC in day-ahead and complete
real-time coordination, Deterministic UC
Centralized stochastic UC in day-ahead and complete
real-time coordination, Stochastic UC

High levels of renewable energy currently integrated in the
system: 51.2 GW of wind power and 47.3 GW solar power

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Policy Analysis Results

Expected policy costs and efficiency losses with respect to deterministic UC

Policy Expected cost Efficiency Efficiency losses
[MMe/d] losses [%] [MMe/year]

ZonalDA-LimRT 30.49 6.0 631
ZonalDA-ComRT 29.56 2.8 295
Deterministic UC 28.76 – –
Stochastic UC 28.49 –0.9 –96

Zonal day-ahead market ignores congestion within zones
leading to increased operation costs
Small efficiency gains of stochastic UC compared to
efficiency losses due to zonal day-ahead market design

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Conclusions

Validation of scenario selection algorithm: The
importance sampling scenario selection algorithm
performs favorably relative to SAA with 1000 scenarios
Decreasing the duality gap versus increasing the
number of scenarios: Reducing the duality gap seems to
yield comparable benefits relative to adding more
scenarios
Efficiency gains: All problems solved within 24 hours,
given enough processors. Parallelization permits the
running time of the studied model to run within acceptable
time frames from operations standpoint.

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Conclusions

Asynchronous algorithm and HPC: Potential to solve
stochastic UC within the same time frame required to solve
deterministic UC using a state-of-the-art MILP solver
Lower bound initialization: Sequential OPF provides fast
lower bounds, significantly reducing running times.
Primal recovery scheme: Obtaining good primal
candidates from first iterations drastically accelerates the
convergence of the algorithm. Nevertheless, large
scenario instances lead to a large number of sub-optimal
candidates that could potentially be pruned.

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Perspectives

Extensions of present model
Comparison of alternative relaxations
Analysis of duality gap

Extensions of asynchronous algorithm
Pruning and scoring candidates based on bounds for ED
subproblems
Dynamical queue management for dual and primal
processes
Multi-stage stochastic UC

A. Papavasiliou & I. Aravena Solving stochastic unit commitment with HPC
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Thank you

Questions?

Contact: anthony.papavasiliou@uclouvain.be

http://perso.uclouvain.be/anthony.papavasiliou/public_html/
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