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The Brazilian hydrothermal scheduling 
problem

� Hydrothermal sistem
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The Brazilian hydrothermal scheduling 
problem



The Brazilian hydrothermal scheduling 
problem

� Due to the predominance of hydro resources, the Brazilian 
hydrothermal scheduling problem is solved by the following 
optimization models

• Medium-term: 5-years planning horizon, with monthly steps

• Short-term: 2-months planning horizon, with weekly steps in first month
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The Brazilian hydrothermal scheduling 
problem
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� The Brazilian HS problem is coupled in time



The short-term HS problem – current
approach

� Two-stage stochastic linear programming problem

� The first month is split into weeks

� Only one inflow scenario for each week (forecast)

� Inflows are updated at each week

� Weekly forecasting is a difficulty task. Differences between realized and
forecasted values increase spot prices volatility

1st month 2nd month

1  2  3  4   5

weeks

Two-stage programming problem



The short-term HS problem – new 
approach

� Multistage stochastic linear programming problem

� The first month is split into weeks

� Inflow scenarios are considered also in the weekly stages

� Inflows are updated at each week
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Multistage programming problem

> Scenario tree

representativity

Improve the decisions

Increase

computational burden

Challenge: to keep
an equilibrium



Scenario tree reduction

Scenario 
reduction

� It is desirable to have:

• Large scenario trees to represent the stochastic process in a satisfactory 
manner 

• Small scenario trees to be able to solve the multistage stochastic program 
in a reasonable CPU time

There are many alternatives to reduce scenario trees...



� Jardim et al. (2001)    

• Based on clustering techniques (K-means)

� Pflug (2001), Dupacova et al. (2003), Growe-Kuska et al. (2003)

• Based on probabilistic metrics 

• Stability results for two-stage stochastic programs

� Heitsch and Romisch (2009), Pflug (2009), Oliveira and 
Sagastizábal (2010), Pflug and Pischler (2012), Kovacevic
and Pischler (2015)

• Based on probabilistic metrics 

• Stability results for multistage stochastic programs



Problem statement

� T>0 is the planning horizon of the hydrothermal scheduling 
problem

� is the stochastic process representing water 
inflows

� support set,                        filtration

� is a linear function

� is a polyhedral feasible set

� is the expected value operator
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Problem statement

� With two different filtered probability spaces

and   

we associate two  different stochastic programs:     

( ): , , P= Ξ ℑΡΡΡΡ ( )' : , ', 'P= Ξ ℑΡΡΡΡ

'( ') : min  [ ( ; )] s. t . ',  ,   0, ,
P t t

v E f x x x X t Tξ= ℑ ∈ = …⊲ΡΡΡΡ

( ) : min  [ ( ; )] s. t . ,  ,   0, ,
P t t

v E f x x x X t Tξ= ℑ ∈ = …⊲ΡΡΡΡ



Nested distance

Pflug (2009), Pflug and Pischler (2012)
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Quadratic process distance

T

M
x x Mx=



Nested distance X Wasserstein distance

The inequality dr(����, ����'''') ≤≤≤≤Dr(����, ����'''') always holds.



Quadratic process distance for scenario 
trees
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Quadratic process distance for scenario 
trees
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Pflug and Pischler (2012) showed that this LP can be decomposed into pairs 
of nodes

The nested (quadratic) distance 
between two trees is a LP!

P(i), P(m), P’(j) and P’(n) are 

given probabilities (of nodes)



Quadratic process distance for scenario 
trees

'

'

'

' '

' :   ' ' :   ':   

2

' '

:   ' :   ' ' :   '

min  ( , )

( )
. .        ( ,  )

( )
( , ')

'( )
             ( ,  )

'( )

       

T T

T TT

T T T

i j

ij

i j

ij i j

i m i j n jj n j

ij i j

i m i i m i j n j

d

P i
s t m i n

P m
D

P j
n j m

P n

π
∈ℵ ∈ℵ

∈ℵ ∈ℵ∈ℵ

∈ℵ ∈ℵ ∈ℵ

ξ ξ π

π = π

=

π = π

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

⋑ ⋑⋑

⋑ ⋑ ⋑

⋑

⋑

Ρ ΡΡ ΡΡ ΡΡ Ρ

,

     

  0  and  1.
ij ij

i j











π ≥ π =


∑

Pflug and Pischler (2012) show that this LP can be split into pairs 
of nodes
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Scenario reduction algorithm
(Kovacevic & Pichler, 2015)

� Employ the nested distance as main tool

Phase 1

Initial 

Reduction

Realizations & 
Probabilities 

Update

Phase 2

Original Tree Initial Reduced Tree Optimal Reduced Tree



Scenario reduction

The algorithm performs as follows:

(i) given an approximating tree, find probabilities 
that decrease the nested distance

This can be done by solving a sequence of LPs

(ii) given the probabilities, update the node 
values of the approximating tree in such a way 
that the approximation is improved

There exists a closed expression in the case of the Quadratic 
process distance



Scenario reduction

(i) given an approximating tree, find probabilities
that decrease the process distance











Scenario reduction

(ii) given the probabilities, update the node 
values of the approximating tree in such a way 
that the approximation is improved
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Scenario reduction
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Kovacevic and Pischler (2012) use the matrix M = I (identity)

We propose to use information from the problem to define other 
matrices: 

• M = inverse of  the correlation matrix  (Mahalanobis distance)
• M = power capacity of hydro power plants



Scenario tree generation 
The HS problem

� A large (original ) scenario tree is generated considering a stage-wise 
independent model

� Water inflow in each hydroelectric reservoir follows a three-parameter 
Lognormal distribution

� Water inflows are correlated 

Each node is a vector with inflows of many hydro plants



Scenario tree generation 
The HS problem

� A large (original ) scenario tree is generated considering stage-wise 
independent model

� Water inflow in each hydroelectric reservoir follows a three-parameter 
Lognormal distribution

� Water inflows are correlated 

This assumption simplifies the scenario tree reduction algorithm!



Assessing quality of the reduced trees

� Stochastic program based on the large (original) scenario tree

� Stochastic program based on the reduced scenario tree

We solve both problems by the Nested Decomposition
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Assessing quality of the reduced trees
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Cutting-plane approximation
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General Framework

A stage-wise independent scenario tree is obtained considering an inflow 
time-independent model (three-parameter Lognormal distribution)
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Numerical Experiments

� Thermal plants data � Load

� Hydro plants data � Cascade



Numerical Results - I

Case
Structure
of the Tree

Scenario 
Distance Matrix

(M)

Out-sampling Policy Simulation (2,000 scenarios)
Computational Time

(minutes)
Operating Cost (R$)

Expected cost GAP (%) K-S Test
Nested
Distance

Nested 
Decomposition

Total

OT
1*5*5*5*5: 

625
- 430,248 - - 99.89 99.89

RT1
1*2*5*5*5: 

250

Identity 429,611 0.15 0.0195 0.015 13.08 13.10

Plant Capacity 429,611 0.15 0.0195 0.017 13.15 13.17

Inverse Correlation 429,640 0.14 0.0190 0.011 16.09 16.10

RT2
1*2*2*2*5: 

40

Identity 432,560 0.54 0.0385 0.016 2.19 2.21

Plant Capacity 432,518 0.53 0.0350 0.017 2.16 2.18

Inverse Correlation 430,813 0.13 0.0240 0.024 2.16 2.18

RT3
1*5*2*2*2: 

40

Identity 437,282 1.63 0.0285 0.017 2.33 2.35

Plant Capacity 436,816 1.53 0.0290 0.015 2.37 2.39

Correlation Inverse 434,517 0.99 0.0195 0.024 2.41 2.43

OT: Original Tree, RT: Reduced Tree, K-S Test is approved if < 0.043



Numerical Results - II

Case
Structure
of the Tree

Scenario 
Distance Matrix

(M)

Out-sampling Policy Simulation (2,000 scenarios)
Computational Time

(minutes)
Operating Cost (R$)

Expected cost GAP (%) K-S Test
Nested
Distance

Nested 
Decomposition

Total

OT
1*10*10*10: 

1000
- 82,853 - - - 397.43 397.43

RT1
1*3*5*8: 

120

Identity 82,551 1.27 0.0385 0.025 7.21 7.24

Plant Capacity 83,140 0.90 0.0380 0.025 7.37 7.40

Inverse Correlation 84,488 1.62 0.0170 0.017 7.32 7.34

RT2
1*8*5*3: 

120

Identity 95,603 16.85 0.1005 0.027 9.27 9.30

Plant Capacity 89,592 16.85 0.0755 0.027 9.40 9.43

Correlation Inverse 82,853 9.50 0.0650 0.021 9.33 9.35

OT: Original Tree, RT: Reduced Tree, K-S Test is approved if < 0.043



Numerical Results - III

Case
Structure
of the Tree

Scenario 
Distance Matrix

(M)

Out-sampling Policy Simulation (10,000 scenarios)
Computational Time

(minutes)
Operating Cost (R$)

Expected cost GAP (%) K-S Test
Nested
Distance

Nested 
Decomposition

Total

OT
1*4*4*4*4*4*

4: 
4096

- 572,183 - - - >1,000 >1,000

RT1
1*2*2*4*4*4*

4: 
1024

Identity 572,197 0.00 0.0031 0.006 288.65 288.66

Plant Capacity 572,433 0.04 0.0027 0.01 183.36 183.37

Inverse Correlation 572,164 0.00 0.0027 0.01 319.14 319.15

RT2
1*2*2*2*4*4*

4: 
512

Identity 572,003 0.03 0.0381 0.01 26.70 26.71

Plant Capacity 572,164 0.00 0.0027 0.01 11.92 11.93

Inverse Correlation 572,660 0.08 0.0389 0.01 26.82 26.83

RT3
1*2*2*2*4*4*

4: 
256

Identity 575,500 0.58 0.0518 0.02 15.00 15.02

Plant Capacity 575,351 0.55 0.0515 0.02 14.80 14.82

Correlation Inverse 574,707 0.44 0.0520 0.01 3.80 3.81

OT: Original Tree, RT: Reduced Tree, K-S Test is approved if < 0.019



First stage decisions
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Case
Structure
of the Tree

Scenario 
Distance Matrix

(M)

Generated Power (MW)

Thermal Difference (%) Hydro Difference (%)

OT
1*4*4*4*4*4*4: 

4096
- 1,275 - 5,725 -

RT2
1*2*2*2*4*4*4: 

512
Plant Capacity 1,275 0.0 5,725 0.0

� KS-Test = 0.0027
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Conclusions & Next Steps

� The results indicate that the Nested Distance (quadratic 
process distance) can reduce the computational burden 
without compromising the expected operational cost and 
policy

� Improvements can be obtained when using others scenario 
distance matrices 

� Apply the methodology in the context of the Brazilian 
Short-term Hydrothermal Scheduling problem

• Bigger system

• The inflows are represented by an auto-regressive model 
(i.e., time-dependent)
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Thank you!

� Welington de Oliveira

� Contact: welington@uerj.br
www.oliveira.mat.br



Work Contributions Probability metric

Dupacova et al (2003), Growe-
Kuska et al. (2003); Heitsch e 
Römish (2005)

-Stability in two-stage stochastic programs

-Heuristic-based algorithms for scenario
reduction

Wasserstein distance

Heitsch e Römish (2009) -Stability in multistage stochastic programs

-Heuristic-based algorithm for scenario
reduction

Wasserstein distance
+ 

Filtration distance

Oliveira; Sagastizábal, et al
(2010)

-Combines sampling with scenario reduction

-Stability in multistage stochastic programs

Wasserstein distance

Pflug (2009) -Introduction of the nested distance Nested distance

Pflug and Pichler (2012)
-Stability in multistage stochastic programs

Nested distance

Kovacevic and Pichler (2015) -Stability in multistage stochastic programs

-Heuristic-based algorithms for scenario
reduction

Nested/Quadratic
distance
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