Scenario tree reduction via quadratic process distances applied to hydrothermal scheduling problems

Welington de Oliveira

Universidade do Estado do Rio de Janeiro - UERJ

Felipe Beltrán Rodríguez Erlon Cristian Finardi Universidade Federal de Santa Catarina – UFSC

AASS Workshop, Rio 2016

Hydrothermal sistem

- Due to the predominance of hydro resources, the Brazilian hydrothermal scheduling problem is solved by the following optimization models
 - Medium-term: 5-years planning horizon, with monthly steps
 - Short-term: 2-months planning horizon, with weekly steps in first month

• The Brazilian HS problem is coupled in time

The short-term HS problem – current approach

Two-stage stochastic linear programming problem

- The first month is split into weeks
- Only one inflow scenario for each week (forecast)
- Inflows are updated at each week
- Weekly forecasting is a difficulty task. Differences between realized and forecasted values increase spot prices volatility

Two-stage programming problem

The short-term HS problem – new approach

- Multistage stochastic linear programming problem
 - The first month is split into weeks
 - Inflow scenarios are considered also in the weekly stages
 - Inflows are updated at each week

Scenario tree reduction

- It is desirable to have:
 - Large scenario trees to represent the stochastic process in a satisfactory manner
 - Small scenario trees to be able to solve the multistage stochastic program in a reasonable CPU time

There are many alternatives to reduce scenario trees...

♦ Jardim et al. (2001)

- Based on clustering techniques (K-means)
- Pflug (2001), Dupacova et al. (2003), Growe-Kuska et al. (2003)
 - Based on probabilistic metrics
 - Stability results for two-stage stochastic programs
- Heitsch and Romisch (2009), <u>Pflug (2009)</u>, Oliveira and Sagastizábal (2010), <u>Pflug and Pischler (2012)</u>, <u>Kovacevic</u> <u>and Pischler (2015)</u>
 - Based on probabilistic metrics
 - Stability results for multistage stochastic programs

Problem statement

- T>0 is the planning horizon of the hydrothermal scheduling problem
- $\xi = (\xi_0, ..., \xi_T)$ is the stochastic process representing water inflows
- $\Xi = \Xi_0 \times \ldots \times \Xi_T$ support set, $\Im = (\Im_t)_{t=0}^T$ filtration

$$\min E_{P}[f(x;\xi)] \text{ s.t. } x \triangleleft \Im, \ x_{t} \in X_{t}, \ t = 0, \dots, T \xrightarrow{r}_{\xi_{1}^{1}} \overset{\xi_{1}^{1}}{\underset{\xi_{2}^{2}}{\xi_{2}^{2}}} \overset{\xi^{1} = (\xi_{1}^{1}, \xi_{2}^{1}, \xi_{3}^{1})}{\underset{\xi_{2}^{2}}{\xi_{2}^{2}}}$$

 $\xi^2 = (\xi^1_1,\,\xi^1_2,\xi^2_3)$

 $\xi^3 = (\xi_1^1, \xi_2^2, \xi_3^3)$

 $\xi^4 = (\xi^1_1,\,\xi^2_2,\xi^4_3)$

 ξ_{3}^{2}

 ξ_{3}^{3}

ξ4

t=3

 m_2 ξ_{2}^{2}

t=2

t=1

- $f: \mathbb{R}^n \times \Xi \to \mathbb{R}$ is a linear function
- \bullet X_t is a polyhedral feasible set
- E_p is the expected value operator

Problem statement

• With two different filtered probability spaces $P := (\Xi, \Im, P)$ and $P' := (\Xi, \Im', P')$

we associate two different stochastic programs:

$$v(\mathbf{P}) \coloneqq \min E_{P}[f(x;\xi)] \text{ s.t. } x \triangleleft \mathfrak{I}, x_{t} \in X_{t}, t = 0,...,T$$

 $v(\mathbf{P}') \coloneqq \min E_{\mathbf{P}'}[f(x;\xi)] \text{ s.t. } x \triangleleft \mathfrak{I}', x_t \in X_t, t = 0, \dots, T$

Nested distance

Pflug (2009), Pflug and Pischler (2012)

Definition For two filtered probability spaces $P := (\Xi, \Im, P)$, $P' := (\Xi, \Im', P')$ and a real-valued distance function $d : \Xi \times \Xi \rightarrow R_+$ the process distance of order $r \ge 1$ is the optimal value of the following optimization problem

$$D_{r}(\boldsymbol{P},\boldsymbol{P}') \coloneqq \begin{cases} \min_{\pi} \left(\iint d\left(\boldsymbol{\xi},\boldsymbol{\xi}'\right)^{r} \pi\left(d\boldsymbol{\xi},d\boldsymbol{\xi}'\right) \right)^{\frac{1}{r}} \\ s.t. \quad \pi\left[A \times \Xi' \mid \mathfrak{I}_{t} \otimes \mathfrak{I}_{t}'\right] = P\left[A \mid \mathfrak{I}_{t}\right] \\ \pi\left[\Xi \times B \mid \mathfrak{I}_{t} \otimes \mathfrak{I}_{t}'\right] = P'\left[B \mid \mathfrak{I}_{t}'\right] \\ \left(B \in \mathfrak{I}_{T}', \ t = 0,...,T\right) \end{cases}$$

where the infimum is among all bivariate probability measures π on the product sigma algebra

$$\mathfrak{I}_T \otimes \mathfrak{I}_T := \sigma(\{A \times B : A \in \mathfrak{I}_T, B \in \mathfrak{I}_T'\}).$$

Pflug and Pischler (2012) established that: $|v(P) - v(P')| \leq L_{\beta}D_r(P,P')^{\beta}$.

Quadratic process distance

Definition. (Quadratic process distance). For all t = 0, ..., T, let M_t be definite positive matrices and $w_t > 0$ given weights. The quadratic process distance is a particular case of the nested distance obtained by taking r = 2 and a distance function given by

$$d\left(\boldsymbol{\xi},\boldsymbol{\xi}'\right) \coloneqq \sum_{t=0}^{T} w_t \left\|\boldsymbol{\xi}_t - \boldsymbol{\xi}'_t\right\|_{M_t}^2.$$

$$D_{r}(\boldsymbol{P},\boldsymbol{P}') := \begin{cases} \min_{\pi} \left(\iint d(\boldsymbol{\xi},\boldsymbol{\xi}')^{r} \pi(d\boldsymbol{\xi},d\boldsymbol{\xi}') \right)^{\frac{1}{r}} \\ st. \quad \pi[A \times \Xi' \mid \mathfrak{I}_{t} \otimes \mathfrak{I}_{t}'] = P[A \mid \mathfrak{I}_{t}] & (A \in \mathfrak{I}_{T}, t = 0,...,T) \\ \pi[\Xi \times B \mid \mathfrak{I}_{t} \otimes \mathfrak{I}_{t}'] = P'[B \mid \mathfrak{I}_{t}'] & (B \in \mathfrak{I}_{T}', t = 0,...,T) \end{cases}$$

$$\left\|x\right\|_{M} = \sqrt{x^{T} M x}$$

Nested distance X Wasserstein distance

Nested distance:

$$D_{r}(\boldsymbol{P}, \boldsymbol{P}') \coloneqq \begin{cases} \min_{\pi} \left(\iint d\left(\boldsymbol{\xi}, \boldsymbol{\xi}'\right)^{r} \pi\left(d\boldsymbol{\xi}, d\boldsymbol{\xi}'\right) \right)^{\frac{1}{r}} \\ s.t. \quad \pi \left[A \times \Xi' \mid \mathfrak{I}_{t} \otimes \mathfrak{I}_{t} \mid \right] = P \left[A \mid \mathfrak{I}_{t} \right] \\ \pi \left[\Xi \times B \mid \mathfrak{I}_{t} \otimes \mathfrak{I}_{t} \mid \right] = P' \left[B \mid \mathfrak{I}_{t} \mid \right] \\ (B \in \mathfrak{I}_{T}, t = 0, ..., T) \\ (B \in \mathfrak{I}_{T}, t = 0, ..., T) \end{cases}$$

Wasserstein distance:

$$d_{r}(\boldsymbol{P}, \boldsymbol{P}') := \begin{cases} \min_{\pi} \left(\iint d\left(\boldsymbol{\xi}, \boldsymbol{\xi}'\right)^{r} \pi\left(d\boldsymbol{\xi}, d\boldsymbol{\xi}'\right) \right)^{\frac{1}{r}} \\ s.t. \quad \pi \left[A \times \Xi' \right] = P\left[A \right] \quad (A \in \mathfrak{I}_{T}) \\ \pi \left[\Xi \times B \right] = P'\left[\mathbf{B} \right] \quad (B \in \mathfrak{I}_{T}') \end{cases}$$

The inequality $d_r(\mathbf{P}, \mathbf{P'}) \leq D_r(\mathbf{P}, \mathbf{P'})$ always holds.

Quadratic process distance for scenario trees

$$D_{2}(\boldsymbol{P},\boldsymbol{P}') = \begin{cases} \min_{\pi} \sum_{i \in \aleph_{T}} \sum_{j \in \aleph_{T}'} d(\xi^{i},\xi^{j})\pi_{ij} \\ s.t. \sum_{j \in \aleph_{T}':n \ \supseteq j} \pi_{ij} = \frac{P(i)}{P(m)} \sum_{i' \in \aleph_{T}:m \ \supseteq i'} \sum_{j' \in \aleph_{T}:n \ \supseteq j'} \pi_{i'j'} \quad (m \ \supseteq i, n) \\ \sum_{i \in \aleph_{T}:m \ \supseteq i} \pi_{ij} = \frac{P'(j)}{P'(n)} \sum_{i' \in \aleph_{T}:m \ \supseteq i'} \sum_{j' \in \aleph_{T}:n \ \supseteq j'} \pi_{i'j'} \quad (n \ \supseteq j, m) \\ \pi_{ij} \ge 0 \text{ and } \sum_{i,j} \pi_{ij} = 1. \end{cases}$$

• Suppose that scenario trees are employed to model the process ξ and the related filtration.

- The set of nodes of a given stage t is \aleph_t .
- The direct predecessor of a node n∈ ℵ is represented by n_ and its successors (children) form a set of nodes denoted by n₊.
- We employ the notation m ∋ i (or equivalently i ⊂ m) to mean that an intermediate node m is a predecessor of the leaf node i (no matter the stage t).
- The probability measure for the nested distance is given by masses π_{ij} at the leaves $i \in \aleph_T$ and $j \in \aleph_T$

Quadratic process distance for scenario trees

$$D_{2}(\boldsymbol{P},\boldsymbol{P}') = \begin{cases} \min_{\pi} \sum_{i \in \aleph_{T}} \sum_{j \in \aleph_{T}'} d(\xi^{i},\xi^{j})\pi_{ij} & P(i), P(m), P'(j) \text{ and } P'(n) \text{ are given probabilities (of nodes)} \\ s.t. \sum_{j \in \aleph_{T}':n \ \supseteq j} \pi_{ij} = \frac{P(i)}{P(m)} \sum_{i' \in \aleph_{T}:m \ \supseteq i' \ j' \in \aleph_{T}:n \ \supseteq j'} \pi_{i'j'} & (m \ \supseteq i, n) \\ \sum_{i \in \aleph_{T}:m \ \supseteq i} \pi_{ij} = \frac{P'(j)}{P'(n)} \sum_{i' \in \aleph_{T}:m \ \supseteq i' \ j' \in \aleph_{T}:n \ \supseteq j'} \pi_{i'j'} & (n \ \supseteq j, m) \end{cases}$$
The nested (quadratic) distance between two trees is a LP!

$$\pi_{ij} \ge 0 \text{ and } \sum_{i,j} \pi_{ij} = 1.$$

Pflug and Pischler (2012) showed that this LP can be decomposed into pairs of nodes

$$\begin{cases} \min_{\eta} \sum_{i \in m_{+}} \sum_{j \in n_{+}} D(i, j) \eta_{ij} \\ s.t. \sum_{j \in n_{+}} \eta_{ij} = P(i / m) \quad (i \in m_{+}) \\ \sum_{i \in m_{+}} \eta_{ij} = P'(j / n) \quad (j \in n_{+}) \\ \eta \ge 0 . \end{cases}$$

Quadratic process distance for scenario trees

$$D_{2}(\boldsymbol{P},\boldsymbol{P}') = \begin{cases} \min_{\pi} \sum_{i \in \aleph_{T}} \sum_{j \in \aleph_{T}'} d(\xi^{i},\xi^{j})\pi_{ij} \\ s.t. \sum_{j \in \aleph_{T}':n \ \supseteq \ j} \pi_{ij} = \frac{P(i)}{P(m)} \sum_{i' \in \aleph_{T}: \ m \ \supseteq \ i'} \sum_{j' \in \aleph_{T}: \ n \ \supseteq \ j'} \pi_{i'j'} \quad (m \ \supseteq \ i, \ n) \\ \sum_{i \in \aleph_{T}:m \ \supseteq \ i} \pi_{ij} = \frac{P'(j)}{P'(n)} \sum_{i' \in \aleph_{T}: \ m \ \supseteq \ i'} \sum_{j' \in \aleph_{T}: \ n \ \supseteq \ j'} \pi_{i'j'} \quad (n \ \supseteq \ j, \ m) \\ \pi_{ij} \ge 0 \text{ and } \sum_{i,j} \pi_{ij} = 1. \end{cases}$$

Pflug and Pischler (2012) show that this LP can be split into pairs of nodes

$$D(i, j) \coloneqq d(\xi^{i}, \xi^{j}) \text{ for all } i \in \aleph_{T} \text{ and } j \in \aleph_{T}'$$

$$D(m, n) \coloneqq \sum_{i \in m_{n}} \sum_{j \in n_{n}} \pi^{*}(i, j / m, n) D(i, j) \text{ for all } m \in \aleph_{t} \text{ and } n \in \aleph_{t}', t = 0, \dots, T,$$

$$\pi^{*}(i, j / m, n) = \eta_{ij}^{*}$$

$$\pi^{*}(i, j / m, n) = \eta_{ij}^{*}$$

$$\pi^{*}(i, j / m, n) = \eta_{ij}^{*}$$

 $(\cdot \nabla \nabla \nabla P (\cdot \cdot))$

 $\pi^*_{ij} = \pi^*(i, j / i_{T-1}, j_{T-1})\pi^*(i_{T-1}, j_{T-1} / i_{T-2}, j_{T-2}) \cdots \pi^*(i_1, j_1 / 0, 0)$

Scenario reduction algorithm (Kovacevic & Pichler, 2015)

Employ the nested distance as main tool

The algorithm performs as follows:

(i) given an approximating tree, find probabilities that decrease the nested distance

This can be done by solving a sequence of LPs

(ii) given the probabilities, update the node values of the approximating tree in such a way that the approximation is improved

There exists a closed expression in the case of the Quadratic process distance

(i) given an approximating tree, find probabilities that decrease the process distance

$$\begin{cases} \min_{\eta, P(\cdot/n)} \sum_{m \in \mathbb{N}_{t}} \left(\sum_{i \in m_{t}} \sum_{j \in n_{t}} D(i, j) \eta_{ij} \right) \\ s.t. \sum_{j \in n_{t}} \eta_{ij} = P(i/m) \quad (i \in m_{+}) \\ \sum_{i \in m_{t}} \eta_{ij} = P'(j/n) \quad (j \in n_{+} \text{ and for all } m \in \aleph_{t}) \\ \eta \ge 0, \ P'(\cdot/n) \ge 0. \end{cases}$$

$$\begin{cases} \min_{\eta_{i} P(\cdot/n)} \sum_{m \in \mathbb{N}_{i}} \left(\sum_{i \in m_{i}} \sum_{j \in n_{i}} D(i, j) \eta_{ij} \right) \\ st. \sum_{j \in n_{i}} \eta_{ij} = P(i/m) \quad (i \in m_{+}) \\ \sum_{i \in m_{i}} \eta_{ij} = P'(j/n) \quad (j \in n_{+} \text{ and for all } m \in \aleph_{i}) \\ \eta \ge 0, \ P'(\cdot/n) \ge 0. \end{cases}$$

$$\begin{cases} \min_{\eta_{i} P(\cdot|n)} \sum_{m \in \mathbb{N}_{i}} \left(\sum_{i \in m_{i}} \sum_{j \in n_{i}} D(i, j) \eta_{ij} \right) \\ st. \sum_{j \in n_{i}} \eta_{ij} = P(i/m) \quad (i \in m_{+}) \\ \sum_{i \in m_{i}} \eta_{j} = P'(j/n) \quad (j \in n_{+} \text{ and for all } m \in \aleph_{i}) \\ \eta \ge 0, \ P'(\cdot/n) \ge 0. \end{cases}$$

$$\begin{cases} \min_{\eta_i P(i|n)} \sum_{m \in \mathbb{N}_i} \left(\sum_{i \in m_i} \sum_{j \in n_i} D(i, j) \eta_{ij} \right) \\ st. \sum_{j \in n_i} \eta_{ij} = P(i \mid m) \quad (i \in m_+) \\ \sum_{i \in m_i} \eta_{ij} = P'(j \mid n) \quad (j \in n_+ \text{ and for all } m \in \mathbb{N}_i) \\ \eta \ge 0, \ P'(\cdot \mid n) \ge 0. \end{cases}$$

(ii) given the probabilities, update the node values of the approximating tree in such a way that the approximation is improved

$$\min_{q} \sum_{i \in \aleph_{T}} \sum_{j \in \aleph_{T}'} \pi_{ij} d(\xi^{i}, q^{j})$$

The particular distance function $d(\xi^i; q^j) \coloneqq \sum_{t=0}^T w_t \|\xi_t^i - q_t^j\|_{M_t}^2$ yields a closed expression for the optimal solution

$$(q_t^{n_t})^{k+1} = \sum_{m_t \in \mathcal{N}_t} \frac{\pi^k(m_t, n_t)}{\sum_{m_t \in \mathcal{N}_t} \pi^k(m_t, n_t)} \cdot \xi_t^{m_t},$$

 $\left\|x\right\|_{M} = \sqrt{x^{T}Mx}$

$$\min_{q} \sum_{i \in \mathfrak{K}_{T}} \sum_{j \in \mathfrak{K}_{T}'} \pi_{ij} d(\xi^{i}, q^{j})$$
$$(q_{t}^{n_{i}})^{k+1} = \sum_{m \in \mathcal{N}_{t}} \frac{\pi^{k}(m_{t}, n_{t})}{\sum_{m \in \mathcal{N}_{t}} \pi^{k}(m_{t}, n_{t})} \cdot \xi_{t}^{m_{t}},$$
$$d(\xi^{i}; q^{j}) \coloneqq \sum_{t=0}^{T} w_{t} \left\| \xi_{t}^{i} - q_{t}^{j} \right\|_{M_{t}}^{2}$$

Kovacevic and Pischler (2012) use the matrix M = I (identity)

We propose to use information from the problem to define other matrices:

- M = inverse of the correlation matrix (Mahalanobis distance)
- M = power capacity of hydro power plants

$$\left\|x\right\|_{M} = \sqrt{x^{T}Mx}$$

Scenario tree generation The HS problem

- A large (original) scenario tree is generated considering a stage-wise independent model
- Water inflow in each hydroelectric reservoir follows a three-parameter Lognormal distribution
- Water inflows are correlated

Each node is a vector with inflows of many hydro plants

Scenario tree generation The HS problem

- A large (original) scenario tree is generated considering stage-wise independent model
- Water inflow in each hydroelectric reservoir follows a three-parameter Lognormal distribution
- Water inflows are correlated

This assumption simplifies the scenario tree reduction algorithm!

Assessing quality of the reduced trees

• Stochastic program based on the large (original) scenario tree

$$v(\boldsymbol{P}) \coloneqq \min \ E_P[f(x;\boldsymbol{\xi})] \text{ s.t. } x \triangleleft \mathfrak{S}, \ x_t \in X_t, \ t = 0, \dots, T$$

• Stochastic program based on the reduced scenario tree

$$v(\mathbf{P}') \coloneqq \min E_{P'}[f(x;\xi)] \text{ s.t. } x \triangleleft \mathfrak{S}', x_t \in X_t, t = 0,...,T$$

We solve both problems by the Nested Decomposition

P'

Assessing quality of the reduced trees

 $v(\mathbf{P}) \coloneqq \min E_{P}[f(x; \boldsymbol{\xi})] \text{ s.t. } x \triangleleft \mathfrak{I}, x_{t} \in X_{t}, t = 0, \dots, T$

$$\min_{\substack{A_1x_1=b_1\\x_1\geq 0}} c_1^{\top} x_1 + \mathcal{Q}_2(x_2,\xi_{[2]})$$

•
$$Q_{t+1}(x_t, \xi_{[t]}) = \mathbb{E}_{|\xi_{[t]}}[Q_{t+1}(x_t, \xi_{[t+1]})]$$
 for $t = 1, \dots, T-1$, e
 $Q_{T+1}(x_T, \xi_{[T]}) = 0$

• $Q_t(x_{t-1},\xi_{[t]}) = \min c_t^\top x_t + Q_{t+1}(x_t,\xi_{[t]})$ s.t $B_t x_{t-1} + A_t x_t = b_t$.

Cutting-plane approximation

 $v(\mathbf{P}) \coloneqq \min E_{P}[f(x; \boldsymbol{\xi})] \text{ s.t. } x \triangleleft \mathfrak{I}, x_{t} \in X_{t}, t = 0, \dots, T$

$$\min_{\substack{A_1x_1=b_1\\x_1\geq 0}} c_1^{\top}x_1 + \check{\mathcal{Q}}_2(x_2,\xi_{[2]})$$

•
$$\check{\mathcal{Q}}_{t+1}(x_t, \xi_{[t]}) = \mathbb{E}_{|\xi_{[t]}}[\underline{Q_{t+1}}(x_t, \xi_{[t+1]})]$$
 for $t = 1, \dots, T-1$, e
 $\check{\mathcal{Q}}_{T+1}(x_T, \xi_{[T]}) = 0$

• $\underline{Q_t}(x_{t-1},\xi_{[t]}) = \min c_t^\top x_t + \mathcal{Q}_{t+1}(x_t,\xi_{[t]})$ s.t $B_t x_{t-1} + A_t x_t = b_t$.

 $v(\boldsymbol{P}') \coloneqq \min \ E_{P'}[f(x;\boldsymbol{\xi})] \text{ s.t. } x \triangleleft \mathfrak{I}', \ x_t \in X_t, \ t = 0, \dots, T$

Gap =
$$c_1^{\mathsf{T}} \mathbf{x}^{\mathsf{P}'} + \check{\mathcal{Q}}_2(\mathbf{x}^{\mathsf{P}'} \xi_{[2]})$$
 - $v(\mathbf{P})$

General Framework

Numerical Experiments

Thermal plants data

Termo	с	Pmax
1	10	350
2	20	300
3	40	275
4	70	200
5	100	150

• Hydro plants data

Hidro	Vin (%)	Qmax (m³/seg)	Vmin (hm³)	Vmax <mark>(</mark> hm³)	Produt (MW/m³)
1	50	220	120	792	0,1783
2	0	236	0	0	0,2447
3	0	585	0	0	0,3457
4	50	1688	5733	22950	0,7475
5	0	1040	0	0	0,3160
6	0	2028	0	0	0,5627
7	0	1076	0	0	0,4043
8	0	1480	0	0	0,1525
9	0	1584	0	0	0,2472
10	0	1988	0	0	0,2038
11	50	141	51	555	0,7754
12	0	148	0	0	0,7461
13	0	96	0	0	0,2064
14	50	2944	890	6150	0,4663
15	50	2958	5856	11025	0,4568

Load	7000
[MWmês]	7000

Cascade

Numerical Results - I

$$d(\xi,\xi') := \sum_{t=0}^{T} w_t \|\xi_t - \xi_t'\|_{M_t}^2$$

OT: Original Tree, RT: Reduced Tree, K-S Test is approved if < 0.043

		Scopario	Out-sampling Poli	cy Simulation (2	Computational Time				
Case S	Structure of the Tree	Distance Matrix	Оре	erating Cost (R\$)	(minutes)				
		(<i>M</i>)	Expected cost	GAP (%)	K-S Test	Nested Distance	Nested Decomposition	Total	
ОТ	1*5*5*5*5: 625	-	430,248	-	-		99.89	99.89	
		Identity	429,611	0.15	0.0195	0.015	13.08	13.10	
RT1	1*2*5*5*5: 250	Plant Capacity	429,611	0.15	0.0195	0.017	13.15	13.17	
		Inverse Correlation	429,640	0.14	0.0190	0.011	16.09	16.10	
		Identity	432,560	0.54	0.0385	0.016	2.19	2.21	
RT2	1*2*2*2*5: 40	Plant Capacity	432,518	0.53	0.0350	0.017	2.16	2.18	
		Inverse Correlation	430,813	0.13	0.0240	0.024	2.16	2.18	
		Identity	437,282	1.63	0.0285	0.017	2.33	2.35	
RT3	1*5*2*2*2: 40	Plant Capacity	436,816	1.53	0.0290	0.015	2.37	2.39	
		10	Correlation Inverse	$434,\!517$	0.99	0.0195	0.024	2.41	2.43

Numerical Results - II

OT: Original Tree, RT: Reduced Tree, K-S Test is approved if < 0.043

		Scopario	Out-sampling Pol	icy Simulation (2	Computational Time			
Case Struct	Structure of the Tree	Distance Matrix	Op	erating Cost (R\$)	(minutes)			
		(<i>M</i>)	Expected cost	GAP (%)	K-S Test	Nested Distance	Nested Decomposition	Total
ОТ	1*10*10*10: 1000	-	82,853	-	-	-	397.43	397.43
		Identity	82,551	1.27	0.0385	0.025	7.21	7.24
RT1 1*3*5*8 120	1*3*5*8: 120	Plant Capacity	83,140	0.90	0.0380	0.025	7.37	7.40
			Inverse Correlation	84,488	1.62	0.0170	0.017	7.32
		Identity	$95,\!603$	16.85	0.1005	0.027	9.27	9.30
RT2	1*8*5*3: 120	Plant Capacity	89,592	16.85	0.0755	0.027	9.40	9.43
		Correlation Inverse	$82,\!853$	9.50	0.0650	0.021	9.33	9.35

Numerical Results - III

OT: Original Tree, RT: Reduced Tree, K-S Test is approved if < 0.019

		Sconario	Out-sampling Policy Simulation (10,000 scenarios)			Computational Time		
Case	Structure of the Tree	Distance Matrix	Ор	erating Cost (R\$)	(minutes)		
0.		(<i>M</i>)	Expected cost	GAP (%)	K-S Test	Nested Distance	Nested Decomposition	Total
ОТ	1*4*4*4*4* 4: 4096	-	572,183	-	-	-	>1,000	>1,000
	1*0*0*/*/*/*/	Identity	$572,\!197$	0.00	0.0031	0.006	288.65	288.66
RT1	4: 1024	Plant Capacity	572,433	0.04	0.0027	0.01	183.36	183.37
		Inverse Correlation	$572,\!164$	0.00	0.0027	0.01	319.14	319.15
	1*0*0*0*1*1*	Identity	572,003	0.03	0.0381	0.01	26.70	26.71
RT2	4: 512	Plant Capacity	$572,\!164$	0.00	0.0027	0.01	11.92	11.93
		Inverse Correlation	572,660	0.08	0.0389	0.01	26.82	26.83
	1*0*0*0*1*1*	Identity	575,500	0.58	0.0518	0.02	15.00	15.02
RT3	4:	Plant Capacity	575,351	0.55	0.0515	0.02	14.80	14.82
	200	Correlation Inverse	574,707	0.44	0.0520	0.01	3.80	3.81

First stage decisions

Case	Structure of the Tree	Scenario Distance Matrix	Generated Power (MW)			
		(141)	Thermal	Difference (%)	Hydro	Difference (%)
ОТ	1*4*4*4*4*4*4: 4096	-	1,275	-	5,725	-
RT2	1*2*2*2*4*4*4: 512	Plant Capacity	1,275	0.0	5,725	0.0

First stage decisions

Case	Structure of the Tree	Scenario Distance Matrix	Generated Power (MW)			
		(141)	Thermal	Difference (%)	Hydro	Difference (%)
ОТ	1*4*4*4*4*4: 4096	-	1,275	-	5,725	-
RT2	1*2*2*2*4*4*4: 512	Plant Capacity	1,275	0.0	5,725	0.0

Conclusions & Next Steps

- The results indicate that the Nested Distance (quadratic process distance) can reduce the computational burden without compromising the expected operational cost and policy
- Improvements can be obtained when using others scenario distance matrices
- Apply the methodology in the context of the Brazilian Short-term Hydrothermal Scheduling problem
 - Bigger system
 - The inflows are represented by an auto-regressive model (i.e., time-dependent)

- R. M. Kovacevic, A. Pichler. Tree approximation for discrete time stochastic processes: a process distance approach. Annals of Operations Research, Vol. 235(1), 395-421, 2015
- G. Ch. Pflug, A. Pichler. A distance for multistage stochastic optimization models SIAM Journal on Optimization, 22, 1-23, 2012
- G. Ch. Pflug. Scenario tree generation for multiperiod financial optimization by optimal discretization. Mathematical Programming, 89:251–271, 2001
- Georg Ch. Pflug. Version-independence and nested distribution in multistage stochastic optimization. SIAM Journal on Optimization, 20:1406–1420, 2009
- J. Dupacová, N. Growe-Kuska, and W. Romisch. Scenario reduction in stochastic programming: An approach using probability metrics. Mathematical Programming, 95:493–511, 2003.
- H. Heitsch and W. Romisch. Scenario tree modeling for multistage stochastic programs. Mathematical Programming, 18:371–406, 2009.
- W. de Oliveira, C. Sagastizábal, et al. "Optimal scenario tree reduction for stochastic streamflows in power generation planning problems". Optimization Methods & Software. Volume 25 Issue 6, December 2010.

Thank you!

 Contact: welington@uerj.br www.oliveira.mat.br

Work	Contributions	Probability metric
Dupacova et al (2003), Growe- Kuska et al. (2003); Heitsch e Römish (2005)	-Stability in two-stage stochastic programs -Heuristic-based algorithms for scenario reduction	Wasserstein distance
Heitsch e Römish (2009)	-Stability in multistage stochastic programs -Heuristic-based algorithm for scenario reduction	Wasserstein distance + Filtration distance
Oliveira; Sagastizábal, et al (2010)	-Combines sampling with scenario reduction -Stability in multistage stochastic programs	Wasserstein distance
Pflug (2009)	-Introduction of the nested distance	Nested distance
Pflug and Pichler (2012)	-Stability in multistage stochastic programs	Nested distance
Kovacevic and Pichler (2015)	-Stability in multistage stochastic programs -Heuristic-based algorithms for scenario reduction	Nested/Quadratic distance