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Derivative Markets

Figure: In 2013, commodities represented 19% of the total amount of traded
derivatives. Source: World Federation of Exchanges
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Black-Scholes Market Model

Assume two assets: a risky stock and a riskless bond.

dXt = µXtdt + σXtdWt ,

dβt = rβtdt.

Price of an option at time P(t,x) at time t and spot value x :

∂P
∂t

+
1
2

σ
2x2 ∂2P

∂x2 + (r −δ)x
∂P
∂x
− rP = 0 P(TE , ·) = h (1)

where h is the payoff at time TE and δ is the continuous dividend rate.
Note: In the original model σ is constant.
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However...

Volatility is not constant! not even deterministic! It a multi-scale
phenomena!

It is not true that the underlying undergoes an Exponential Brownian
Motion

Even more so in high frequency contexts...

Implied Volatility: The value of the volatility that should be used in the
Black-Scholes formula to give the quoted market price of a derivative.
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The Concept of Implied Volatility

Recall
CBS(X , t;K ,T , r ,σ0) = XN(d+)−Ke−r(T−t)N(d−) (2)

where N is the cumulative normal distribution function and

d± =
log(Xer(T−t)/K )

σ0
√

T − t
± σ0

√
T − t
2

. (3)

Notion of Implied Volatility: Fix everything else and consider

σ 7−→ CBS(X , t;K ,T , r ,σ)

The implied volatilty is the inverse to this map.
IMPLIED VOL: ”wrong number that when plugged into the wrong equation
gives the right price”
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IMPLIED VOL

Figure: Implied Volatility Surface- (From Bruno Dupire - IMPA talk)
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Stochastic Behavior of the Volatility
IBOVESPA Index and its Volatility

Figure: IBOVESPA Index and its Volatility

Local Vol. Calibration J.P.Zubelli (IMPA) Mar. 28th, 2016 8 / 56



Model Uncertainty

The concept of Model Risk is as important as operational, market, and credit
risk

Report Williams(1999): $5 billion in derivative losses during 1999 were
attributable to model risk.
Fitting the smile: Local volatity reconstruction/identification...
We’ll see that this is not a well-posed problem in Hadamard’s sense It needs
stabilization!
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Volatility
Different Interpretations

Econometrics - Historical

Implied (or Implicit)
Stochastic Volatility Models

fast mean reversion (Papanicolaou, Fouque, et al)
for commodities: jt work Fouque, Saporito, Zubelli; IJTAF2015

Local Volatility NON PARAMETRIC (focus of this talk)
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Central Problems

Understand volatility behavior.

Protect portfolios against volatility oscilations.

Find parsimonious and efficient models (simple but not too simple!)

Calibrate such models in a robust and effective way.

Price other derivatives consistently
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Local Volatility Model
B. Dupire

Idea: Assume that the volatility is given by

σ = σ(t,X)

i.e.: it depends on time and the asset price.

Easy to check that the Black-Scholes eq. holds.

∂P
∂t

+
1
2

σ(t,X)2X 2 ∂2P
∂X 2 + r

(
X

∂P
∂X
−P

)
= 0 (4)

P(T ,X) = h(X) (5)

From now on: h(X) = (X −K )+ or h(X) = (K −X)+
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The Smile Curve and Dupire’s Equation

Assuming that there exists a local volatility function σ = σ(t,X) for which (4)
holds Dupire(1994) showed that the call price satisfies{

∂T C− 1
2 σ2(T ,K )K 2∂2

K C + rK ∂K C = 0 , K > 0 , T ≥ 0
C(K ,T = 0) = (X −K )+ ,

(6)

Theoretical: way of evaluating the local volatility

σ(T ,K ) =

√
2

(
∂T C + rK ∂K C

K 2∂2
K C

)
(7)

In practice To estimate σ from (6), limited amount of discrete data and thus
interpolate. Numerical instabilities! Even to keep the argument positive is hard.
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Related Work
Very vast!!!
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Message

Local Vol. calibration is an important problem
Ill-posed problem that requires regularization

Lots of numerical issues
Convex optimization tools
Data assimilation problems, noisy, bid & ask spreads, model noisy
Bayesian interpretation

Present techniques applicable also to commodities

Current research: Heston with a local-vol term...

Future research: Integrate with exotic option pricing
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Impact

Pricing of exotic options

Risk management

Volatility trading

Uncertainty quantification and model risk reduction
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Problem Statement

Starting Point: Dupire forward equation [Dup94]

−∂T U +
1
2

σ
2(T ,K )K 2

∂
2
K U− (r −q)K ∂K U−qU = 0 , T > 0 , (8)

K = X0ey , τ = T − t , b = q− r , u(τ,y) = eqτU t,X (T ,K ) (9)

and

a(τ,y) =
1
2

σ
2(T − τ;X0ey ) , (10)

Set q = r = 0 for simplicity to get:

uτ = a(τ,y)(∂
2
y u−∂y u) (11)

and initial condition
u(0,y) = X0(1−ey )+ (12)
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Problem Statement

The Vol Calibration Problem
Given an observed set

{u = u(t,X ,T ,K ;σ)}(T ,K )∈X

find σ = σ(t,X) that best fits such market data

Noisy data: u = uδ

Admissible convex class of calibration parameters:

D(F) := {a ∈ a0 + H1+ε(Ω) : a≤ a≤ a}. (13)

where, for 0≤ ε fixed, U := H1+ε(Ω) and a > a > 0.

Parameter-to-solution operator

F : D(F)⊂ H1+ε(Ω)→ L2(Ω)

F(a) = u(a) (14)
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Setting of the problem

Theorem (H. Egger-H. Engl[EE05] Crepey[Cré03])
The parameter to solution map

F : H1+ε(Ω)→ L2(Ω)

is

weak sequentialy continuous

compact and weakly closed

Consequences:

The inverse problem is ill-posed.

We can prove that the inverse problem satisfies the conditions to apply the
regularization theory.
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Well-Posed and Ill-Posed Problems

Hadamard’s definition of well-posedness:

Existence

Uniqueness

Stability

The problem under consideration: Ill-posed.
Equation:

F(a) = u

Need Regularization:
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Approach

Convex Tikhonov Regularization
For given convex f minimize the Tikhonov functional

F
β,uδ(a) := ||F(a)−uδ||2L2(Ω) + βf (a) (15)

over D(F), where, β > 0 is the regularization parameter.

Remark that f incorporates the a priori info on a.

||ū−uδ||L2(Ω) ≤ δ , (16)

where ū is the data associated to the actual value â ∈D(F).

Assumption (very general!)

Let ε≥ 0 be fixed. f : D(f )⊂ H1+ε(Ω)−→ [0,∞] is a convex, proper, coercive
and sequentially weakly lower semi-continuous functional with domain D(f )
containing D(F).
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Questions

Theoretical Questions:
Does there exist a minimizer of the regularized problem?

Suppose that the noise level goes to zero... How fast does the regularized
go to the true solution?

Results obtained in joint work with D. Cezaro and O. Scherzer.
Published in J. Nonlinear Analysis, 2012 [DCSZ12]
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Practical Questions

Can we devise an iterative algorithm to compute the solution?

Does this algorithm converge?

Can we regularize by stopping the iteration judiciously?

We proved:
1 A tangential cone condition that ensures convergence of the

Landwebber iteration. Joint work w/ D. Cezaro. (IMA J. of Applied
Math. 2013)

2 Obtained a Morozov-type criterium to stop the iteration. Joint work
w/ Albani & D. Cezaro (A.Analysis & Discrete Math. 2014)

3 Developed a regularization by discretization with a stopping
criterium. Joint work w/ Albani & D. Cezaro. (Inv. Problems in
Imaging. 2016)

We implemented: The different algorithms and compared with alternatives
(such as (ensemble) Kalman filter based iterations)
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How about algorithms?
NOTE: We have proved

We have also proved a tangential cone condition for this problem, which implies
that the Landwever iteration converges in a suitable neighborhood. Landweber
Iteration [EHN96]:

aδ
k+1 = aδ

k + cF ′(aδ
k )∗(uδ−F(aδ

k )) . (17)

Discrepancy Principle:∥∥∥uδ−F(aδ

k∗(δ,yδ)
)
∥∥∥ ≤ rδ <

∥∥∥uδ−F(aδ
k )
∥∥∥ , (18)

where

r > 2
1 + η

1−2η
, (19)

is a relaxation term.
If the iteration is stopped at index k∗(δ,yδ) such that for the first time, the
residual becomes small compared to the quantity rδ.
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Numerical Examples with Simulated Data
Description of the Examples

In our first examples we used a Landweber iteration technique we
implemented the calibration.

Produced for different test variances a the option prices and added
different levels of multiplicative noise.

The examples consisted of perturbing a = 1 during a period of
T = 0, · · · ,0.2 and log-moneyness y varying between −5 and 5.

Initial guess: Constant volatility.
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Numerical Examples - Exact Solution
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Numerical Examples 1 - noiseless - 4000 steps
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Numerical Examples 1 - error - 100 steps
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Numerical Examples 1 - error - 300 steps
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Numerical Examples 1 - error - 500 steps
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Numerical Examples 1 - error - 1000 steps
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Numerical Examples 1 - error - 2000 steps
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Numerical Examples 1 - error - 4000 steps
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Numerical Examples 2 - 5% noise level - 100 steps
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Numerical Examples 2 - 5% noise level - 200 steps
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Numerical Examples 2 - 5% noise level - 300 steps
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Numerical Examples 2 - 5% noise level - 400 steps
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Numerical Examples 2 - 5% noise level - Stopping criteria
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Numerical Examples 2 - 5% noise level - 2000 iterations
Too many iterations!!!
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Local Vol Surface Reconstruction w/ Synthetic Data

Figure: Calibration of the local volatility in 5 iterations. Shown from the upper left,
clockwise, are the 1st iteration, 3rd iteration, 5th iteration and the ground truth.
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Local Vol Surface for WTI Crude Oil
totally nonparametric

Figure: Local Vol Surface associated to Heston Model Calibrated on SPX data
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Real Data Results
Note the scarcity of the data

Figure: Data locations for a PBR set in the (τ,y) domain with our coarsest mesh in the
background.
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Numerical Examples: with Real Data
Reconstruction of a = σ2/2 with PBR Stock Data (implemented by Vinicius L. Albani/IMPA)

Figure: Minimal Entropy functional / Landweber Method / a priori Implied Vol /
maturities: 2010-11
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Local Vol Surface for Henry Hub Natural Gas

In the next plots we show an online approach (joint work w/ V. Albani). We
performed the following:

We consider the evolution of prices of futures and options for several days
but kept the maturity dates and all the other features of the options.

Calibrated using the extra information.

This is part of an extension of the above results that leads to incorporating
the flow of information.
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Figure: Local Vol Surface associated to Henry Hub Gas Prices
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Calibration of the Local Volatility Surface
Adherence of the Implied Volatility

Figure: Implied (Black-Scholes) volatility corresponding to the local volatility surfaces
obtained with the six method variants compared to the market one SPX data.
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Calibration of the Local Volatility Surface
Adherence of the Implied Volatility (cont.1)

Figure: Implied (Black-Scholes) volatility corresponding to the local volatility surfaces
obtained with the six method variants compared to the market one SPX data.
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Calibration of the Local Volatility Surface
Adherence of the Implied Volatility (cont.2)

Figure: Implied (Black-Scholes) volatility corresponding to the local volatility surfaces
obtained with the six method variants compared to the market one SPX data.
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Calibration of the Local Volatility Surface
Adherence of the Implied Volatility (cont.3)

Figure: Implied (Black-Scholes) volatility corresponding to the local volatility surfaces
obtained with the six method variants compared to the market one SPX data.
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Conclusions

Volatility surface calibration is a classical and fundamental problem.
We developed a unifying framework for the regularization that makes use
of tools from Inverse Problem theory and Convex Analysis and
established:

1 Convergence of the regularized sol. w.r.t the noise level in different
topologies

2 Implemented a Landweber type calibration algorithm.
3 Implemented an Ensemble Kalman Filter algorithm.

Extended the theory and the algorithms to commodity derivatives.

Developed an Online Calibration Methodology
Future Possibilities:

1 Incorporate another source of stochasticity (generalized Heston models)
2 Integrate with the evaluation of complex derivatives

.
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