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Models to describe traffic flows under congestion
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Introduction

Question: control traffic flows and congestion

THE WHOLE INTERNET

INTERNET

294.000.000.000 mails/day
2.000.000.000 videos/day
8.500.000.000 webpages
2.100.000.000 users
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Question: control traffic flows and congestion

INTERNET Backbone
193.000.000 domains
75.000.000 servers
35.000 AS's
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Equilibrium: Wardrop's basic idea... 1952

t1 = 51 ( wq )
g = = 8
th =5 ( Wo )
Ilzsl(wl)
Wy

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 6 /108



Equilibrium: Wardrop's basic idea... 1952

t1 = 51(W1)
g = =8
th = 52(W2)
Ilzsl(wl)
g=w1+w
wi >0=H<t
w>0=6Hb<t
Wy
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Equilibrium: Wardrop's basic idea... 1952

t1 = 51(W1)
g = = 8
th = 52(W2)

=S, 5,(w)
g=w+w
w1 >0=1

wr >0=t

to
t

W, Wy
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Outline

@ Equilibrium models
© Adaptive learning
@ TCP/IP protocols

© Risk-averse routing
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Equilibrium

Deterministic & stochastic equilibrium models
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Equilibrium Wardrop

Wardrop Equilibrium (Wardrop's52)

network (N, A)

arc travel times t, = s,(ws,)
travel demands g,-d >0
routes Rf’

Given
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Equilibrium Wardrop

Wardrop Equilibrium (Wardrop's52)

network (N, A)

arc travel times t, = s,(ws,)
travel demands g,-d >0
routes Rf’

Given

Split g,-d = Zrem X, with x, > 0 so that only shortest routes are used
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ieidicp
Wardrop Equilibrium (Wardrop's52)

network (N, A)

arc travel times t, = s,(ws,)
travel demands g,-d >0
routes Rf’

Given

Split g,-d = Zrem X, with x, > 0 so that only shortest routes are used

where
78 =min,crs T, (minimal time)
T, =) .c,5a(wa) (route times)
Wa =D o, Xr (total arc flows)
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ieidicp
Variational characterization (Beckman-McGuire-Winsten'56)

Theorem

(w2)aea Wardrop equilibrium < optimal solution of

P) Min za:/o sa(z) dz

s.t. flow conservation

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 10 / 108



ieidicp
Proof

re Rf-j,x, >0=>T, = minpeRf’ T, is equivalent to

Z Z T.(% —x)>0 for all feasible X
(ivd) I‘ER?
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ieidicp
Proof

re Rf-j,x, >0=>T, = mi”peRf’ T, is equivalent to

Z Z Zsa(wa)(iq —x)>0 for all feasible X

(’7d) I’GR7 aer

Exchanging the order of summation this becomes

Z Z Z Sa(wa)(R% — %) >0 for all feasible X

a€A (i d) rGR;’,rBa
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ieidicp
Proof

re Rf-j,x, >0=>T, = mi”peRf’ T, is equivalent to

Z Z Zsa(wa)(iq —x)>0 for all feasible X

(’7d) I’GR7 aer

Exchanging the order of summation this becomes

Zsa(wa)(v”va —w,) >0 for all feasible x
acA

which are precisely the optimality conditions for the convex program

min Z/Owa 52(2)dz

w feasible
acA

O
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ieidicp
Variational characterization (Beckman-McGuire-Winsten'56)

Theorem

(WX)aeca Wardrop equilibrium < optimal solution of

(P) Min Z;/o sa(z) dz

s.t. flow conservation
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ieidicp
Variational characterization (Beckman-McGuire-Winsten'56)

Theorem

(WX)aeca Wardrop equilibrium < optimal solution of

(P) Min Z;/o sa(z) dz

s.t. flow conservation

Corollary
@ There exists a Wardrop equilibrium w*
@ Equilibrium travel times t} = s,(w}) are unique

@ If sy(+) strictly increasing = w* unique
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ieidicp
Dual characterization (Fukushima’84)

Change of variables: w, < t,
ta
: -1 d_d
(D) Min 3 |t @dz- > e

o(t)

strictly convex
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ieidicp
Dual characterization (Fukushima’84)

Change of variables: w, < t,
ta
: -1 d_d
(D) Min 3 |t @dz- > e

o(t)

strictly convex

t—79(t) = minimum travel time
concave, non-smooth, polyhedral
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ieidicp
Dual characterization (Fukushima’84)

Change of variables: w, < t,
ta
: -1 d_d
(D) Min 3 |t @dz- > e

o(t)

strictly convex

t—79(t) = minimum travel time
concave, non-smooth, polyhedral

78 = min[t, + Tﬁ Bellman's equations

1
acAf
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ieidicp
Method of Successive Averages

Algorithm 1 MSA - main iteration
1: Compute t = sy(w?)
2: Assign g,-d to shortest routes
3: Compute arc flows W] = ®,(w")
4: Update w"! = (1—a,)w" + a,w"

Wardrop equilibrium = Fixed point of ¢
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Equilibrium [SIUIS
What if travel times are uncertain?

Copenhagen — DTU Transport (www.transport.dtu.dk)

Figure 2: Example of real time illustration of congestion (Source:
Vejdirektoratet, www.trafikken.dk)
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Figure 7: Observations of travel time by time of day. Frederiks-
sundsvej, inward direction
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Equilibrium [SIUIS

Stochastic User Equilibrium (Dial'71, Fisk’80)

Drivers have different perceptions of route costs

T =T +e random
Fd — variables

= min cpa T,
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Equilibrium [SIUIS

Stochastic User Equilibrium (Dial'71, Fisk’80)

Drivers have different perceptions of route costs

Tr=T +e } random
=d _ i T variables
T = min crd T,

Demand splits according to the pbb of each route being optimal

Xy = g,-d P( T, = %,-d)

with t, = s;(w,) and w, = > - X, as before
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Equilibrium SUE

LocGIiT MODEL (Dial'71, Fisk'80)
e, i.i.d. Gumbel noise (supported by Gnedenko's theorem)

exp(—ST,)
56737 exp(_IB TS)

Xr = gld Z

Drawbacks: independence is unlikely & tractable only for small networks

PROBIT MODEL (Daganzo'82)
€, correlated Normal noise
No closed form equations = Montecarlo

Drawback: tractable only for very small networks
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Equilibrium SUE

Discrete choice models

Finite set of alternatives i € | with random costs Z; = zj +¢;.

Choose alternative of minimum cost. The expected cost is

P(z) = Elmin(zi-+2)
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Equilibrium [SIUIS

Discrete choice models

Finite set of alternatives i € | with random costs Z; = zj +¢;.

Choose alternative of minimum cost. The expected cost is

P(z) = Elmin(zi-+2)

Proposition
@ ¢ is a concave finite function

@ If (gi)ier has continuous distribution then ¢ is smooth with

Dy

Zj

P(zi+¢; optimal) =
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Equilibrium SUE

ExXAMPLE: Multinomial Logit, e ~ i.i.d. Gumbel

p(z) = —5In[Z;exp(—5z)]
o _ exp(—LBz)
dzk >_jexp(—Pz)
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Equilibrium [SIUIS

Dual characterization of SUE

(D) Min Z/o asa_l(z) dz =Y gfrf(t)
a id

¢(t)

strictly convex
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Equilibrium [SIUIS

Dual characterization of SUE

(D) Min Z/o asa_l(z) dz =Y gfrf(t)
a id

¢(t)

strictly convex

t— 79(t) = expected minimum travel time
concave, smooth

7(t) = E| rg;{‘d Trter]
reie;
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Equilibrium MTE

Markovian Traffic Equilibrium (Akamatsu'00, Baillon-C'06)

Routing as a stochastic dynamic programming process
t,=tite,
= ~ random

= ZaEr ta H

variables

!

...d _ . ad
i = min cpa T,

At every intermediate node i/, users select a random optimal arc

el ~d
i, AD -7

G Q31 argmin f, + 7
-7 aGA?r

o

= Markov chain for each destination d
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Equilibrium MTE

MTE equations

Expected in-flow

d_ d d
Xi = &j +ZaeA; vy

leaves node i according to

v = xP(t, + 7 < T+ 7 Vb e Al)

o i
v o

% /\A'
> i
' Vm ‘
9

with t, = s,(w,) and w, = >, v
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Equilibrium MTE

Variational formulation

~d . ~ ~d
i = argl‘r;{ta + 7o)

i

Theorem (Baillon-C'06)

79 = E(79) is the unique solution of the stochastic Bellman equations

Tj =0
rd = E(min,ca+ {ta + 7}2’ +e91)

Moreover t — 7(t) is concave & smooth.
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Equilibrium MTE

Variational formulation

Theorem (Baillon-C'06)
MTE is characterized by

(D) Min o) 2 3 [0 - Y g0
a id

...same form as Wardrop equilibrium!

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 24 /108



MIIE
Method of Successive Averages

Algorithm 2 MSA - main iteration

1. Compute current arc travel times t7 = s,(w))
Solve stochastic Bellman’s equations
Compute invariant measures of Markov chains ¢
Aggregate flows W = > v¢
Update w1 = (1—a,)w" + a,w"
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Method of Successive Averages

Algorithm 2 MSA - main iteration

1. Compute current arc travel times t7 = s,(w))
Solve stochastic Bellman’s equations
Compute invariant measures of Markov chains ¢
Aggregate flows W = > v¢
Update w1 = (1—a,)w" + o, "

Wn+1 N

o = —Vo(t")

ap
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MIIE
Method of Successive Averages

Algorithm 2 MSA - main iteration

1

Compute current arc travel times t = s,(w))

Solve stochastic Bellman’s equations

Compute invariant measures of Markov chains ¢
~n ~d

Aggregate flows W] = VS

Update w1 = (1—a,)w" + o, "

Wn+1 N ~

2 V(") = - D(w) 1w

Op
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MIIE
Method of Successive Averages

Algorithm 2 MSA - main iteration

1. Compute current arc travel times t7 = s,(w))

Solve stochastic Bellman’s equations

Compute invariant measures of Markov chains ¢
sn _ N od

Aggregate flows W] = VS

Update w1 = (1—a,)w" + o, "

n ~

Wt — —Vg(t") = —D(w") 'V (w")

ap

Theorem (Baillon-C'06)
S an =00 and Y a? < oo = convergence to MTE
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Equilibrium MTE

Stochastic MSA iterations

Absolute precision : Iog(||vT/k—Wk||)

6 T T

-10 L L L I
0 50 100 150 200 250

Iterations
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Equilibrium MTE

Stochastic MSA-Newton iterations

Absolute precision : log([[#*-wX|[)
6 T T

-10 L L L I I I
0 2 4 6 8 10 12 14

Iterations
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Equilibrium Nash

Atomic equilibrium in congestion games

A finite set of players i € | traveling from o; to d;
Each player i selects a path r; € R;

These choices induce arc loads uy, = #{i: a € r;}

Player i experiences a travel time ¢;(r;, r-j) = >_,c,. Sa(ua)

Definition

A pure Nash equilibrium is a strategy profile (r;);c; so that for each i

ci(riyri) < ci(rl, ri) VrleR,;

Example: 50%-50% split between 2 identical routes
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Equilibrium Nash

Mixed equilibrium

o Mixed strategies 7/ = (77"),er, € A(R})

@ Expected costs

C"(ﬂ-i’ﬂ-_i) = Ex(ci(ri,r-i)) = Z WirZE(sa(]_ + ua_i))-

reR; acr
where u; ' =#{j #i:a€r}.

Definition

A mixed Nash equilibrium is a strategy profile (7');c; so that for all

c(r', 77 < ci(r,m ™) Vre A(R))

Multiple mixed equilibria. .. Examples with 2 identical routes
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Equilibrium Nash

Rosenthal’s potential

Theorem (Rosenthal'73)

Consider the potential function

[°F}
o((r)ier) = Y > sai)-
acA j=1
Then for each player i € | and every alternative path r! # r;

O(rf, i) = ®(ri, r-i) = ¢i(rf, r-i) = ci(ri, r-i).

Corollary

a) There exist pure Nash equilibria: any (local) minimum of ®(-)

b) Best response dynamics converge in finitely many iterations to a Nash
equilibrium in pure strategies. .. but require full information !

v
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Rosenthal’s potential — Proof

If player i changes from r; to r/ the new loads are
u+1 foraeri\r

/ /
uy =1« u,—1 foraern\r
u, otherwise

O(rl r) —o(ri,ri) = Z sa(ua+1) — Z sa(uz)

aer!\r; aer\r!
= Z sa(uy) — Zsa(“a)
aEr,.’ acr;

= C,‘(I’,-,, r—i) - Ci(rl'v I’.,‘)
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Adaptive dynamics and equilibrium
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Dynamical models that sustain equilibrium? (C-Melo-Sorin'10)

i = 1,...,N drivers

r = 1,...,M routes

1,2,...,N|:>

M

c” = travel time of route r under a load of u drivers
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Adpative dynamics in repeated games

Fictitious play, stochastic fictitious play, reinforcement dynamics, replicator
dynamics, asymptotic calibration... dozens of papers in last 20 years

Fudenberg D., Levine D.K., The Theory of Learning in Games
MIT Press (1998)

Hofbauer J., Sigmund K., Evolutionary Games and Population Dynamics
Cambridge University Press (1998)

Young P., Strategic Learning and its Limits
Oxford University Press (2004)

Sandholm W., Population Games and Evolutionary Dynamics
Forthcoming (2011)
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Discrete stochastic adaptive learning process

State variable: x' = perception of driver i on route r
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Discrete stochastic adaptive learning process

State variable: x' = perception of driver i on route r
Random choice: Yir — 1 if i takes route r
) o 0 otherwise

exp(—fx")

™= BYTSD = s ()
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Discrete stochastic adaptive learning process

State variable: x' = perception of driver i on route r
Random choice: Yir — 1 if i takes route r
) o 0 otherwise
: . exp(—Bx'"
71_”’ — ]P)( er — 1) p( /3 )Ie
>0 exp(—Bx")
Route loads: uro= Y
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Discrete stochastic adaptive learning process

State variable: x' = perception of driver i on route r
. ; 1 if i tak
Random choice: Y" = 't 1 takes route r
0 otherwise
. . exp(—pBx'"
7.‘.II’ — ]P)( er — 1) p( /3 )e
>_pexp(—Bx")

Route loads: uro= Y
Dynamics:

T A T A

state pbb’s routes loads costs update

Minimal information: Players only observe their own payoff !
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Discrete stochastic adaptive learning process

State variable: x' = perception of driver i on route r
Random choice: Yir — 1 if i takes route r
) o 0 otherwise
: . exp(—Bx'"
7.‘_II’ — ]P)( er — 1) p( /3 )Ie
>0 exp(—Bx")
Route loads: uro= Y

Dynamics:
(T—an)x) ) +anc,, Y =1
xir if Yir=

n

Minimal information: Players only observe their own payoff !
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Discrete stochastic adaptive learning process

State variable: x' = perception of driver i on route r
Random choice: Y = L if i takes route r
0 otherwise
: : exp(—pBx'"
7.‘_II’ — ]P)( er — 1) p( /3 )Ie
>0 exp(—Bx")
Route loads: uro= Y
Dynamics:
Xy = Xp_1+on Y[y — X
~—_——

\/7ir
Vn

Minimal information: Players only observe their own payoff !

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 35 /108



Stochastic Approximation: basic framework
(Robbins—Monro'Sl, Ljung'71

A Robbins-Monro process is a stochastic process of the form

(RM)

..... Benaim—Hirsch’96)

Xn4+1—Xn

n+1

F(Xn) + Unt1

with u, a sequence of random variables adapted to a filtration {F,}pen in
a probability space (2, F,P): u, is F,-measurable with E(upy1|F,) = 0.
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Stochastic Approximation: basic framework
(Robbins—Monro'Sl, Ljung'71

A Robbins-Monro process is a stochastic process of the form

(RM)

..... B

enaim—Hirsch’96)

Xn4+1—Xn

n+1

= F(Xn) + Up+1

with u, a sequence of random variables adapted to a filtration {F,}pen in
a probability space (2, F,P): u, is F,-measurable with E(upy1|F,) = 0.

Such a process can be interpreted as a stochastically perturbed

discretization of the differential equation

dx __
(OD) % — F(x)
Equilibrium Routing under Uncertainty

36 / 108



Stochastic Approximation: attractors and convergence

Under the following conditions (with p > 2)

@ x, bounded

@ u, bounded in LP

® > a,=ocand Za},ﬂ’/z < o0
the w-limit set of the sequence (xp)ncn generated by (RM) is P-almost
surely a compact set which is invariant for (DD) with no proper attractor.

insert figure ICT
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Stochastic Approximation: attractors and convergence

Under the following conditions (with p > 2)

@ x, bounded

@ u, bounded in LP

® > a,=ocand Za},ﬂ’/z < o0
the w-limit set of the sequence (xp)ncn generated by (RM) is P-almost
surely a compact set which is invariant for (DD) with no proper attractor.

insert figure ICT

Theorem

Under the assumptions above
Q If x* is a global attractor of (DD) then P(x, — x*) =1
@ If x* is a local attractor of (DD) then P(x, — x*) >0
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Stochastic Approximation: example statistical estimation
(Robbins-Monro'51)

Problem: Estimate the intensity x > 0 for a radiation therapy which
allows to reduce a tumor by a fraction p (in expected value).
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Stochastic Approximation: example statistical estimation

(Robbins-Monro'51)

Problem: Estimate the intensity x > 0 for a radiation therapy which
allows to reduce a tumor by a fraction p (in expected value).

Treatment effectivity is a bounded random variable Y ~ F(x) with
E(Y) = M(x) an unknown increasing function of x. We assume that there

is a unique solution @ of the equation M(6) = p.
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Stochastic Approximation: example statistical estimation
(Robbins-Monro'51)

Problem: Estimate the intensity x > 0 for a radiation therapy which
allows to reduce a tumor by a fraction p (in expected value).

Treatment effectivity is a bounded random variable Y ~ F(x) with
E(Y) = M(x) an unknown increasing function of x. We assume that there
is a unique solution @ of the equation M(6) = p.

We observe outcomes y, = Y(x,) at levels xg, x1, X2, . .. and update

Xn+1 = Xn + Qni1(p — Yn)-

with (ap)nen € €2\ €1
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Stochastic Approximation: example statistical estimation
(Robbins-Monro'51)

Problem: Estimate the intensity x > 0 for a radiation therapy which
allows to reduce a tumor by a fraction p (in expected value).

Treatment effectivity is a bounded random variable Y ~ F(x) with
E(Y) = M(x) an unknown increasing function of x. We assume that there
is a unique solution @ of the equation M(6) = p.

We observe outcomes y, = Y(x,) at levels xg, x1, X2, . .. and update
Xnt1 = Xn + @np1(p — Yn).
with (an)nen € €2\ £1. The corresponding ODE
& =r—M>x)

has 6 as its unique global attractor so that x, — 6 almost surely.
Equilibrium Routing under Uncertainty 38 / 108



Stochastic Approximation: example law of large numbers

Let (Yx)ken be a sequence of i.i.d. bounded random variables with
expected value p. Let x, = %(Yl +- 4 Yn).
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Stochastic Approximation: example law of large numbers

Let (Yx)ken be a sequence of i.i.d. bounded random variables with
expected value p. Let x, = %(Yl +- 4 Yn).

Setting o, = % we have

Xnt1—Xn

i Yn+1 — Xn

= W —Xp+ Upt1
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Nl L L)@  Stochastic Approximation
Stochastic Approximation: example law of large numbers

Let (Yx)ken be a sequence of i.i.d. bounded random variables with
expected value p. Let x, = %(Yl +- 4 Yn).

Setting ), = % we have

Xnt1—Xn

An41 = Yn+1 — Xn

= W — Xp+ Upt1

The corresponding ODE is

dx _
dt =M X

whose solution is exponential with x(t) — p, thus x, — p almost surely.
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Discrete stochastic adaptive learning process

Back to adaptive learning in the atomic congestion game

State variable: x'™ = perception of driver i on route r

{ 1 if i takes route r

Random choice: Y = 0 otherwise

: : exp(—Bx")
= P(Y"=1 —_—
L S )
Route loads: uro= LY
Dynamics:
Xy = x4y + Yr;'r[cﬁg — Xy
—_———

\/7ir
Vn
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Continuous-time adaptive dynamics

Xn —

Qp

I
=

Learning process
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Continuous-time adaptive dynamics

(LP)

Xp — Xn—1 -~

Qp

=V,

Learning process

Mean field approximation: if 3" a;, = co and Y" a2 < oo

(AD)

dx

i

E(V|x)

Adaptive dynamics
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Analytic expression for the mean field

E( \N/i’|x) = " [E(c!, | YT =1) —x"]
N——— —

Fir(r)
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Analytic expression for the mean field

E( \N/i’|x) = " [E(c!, | YT =1) —x"]
N——— —
Fir(r)

N—-1
e Yo T [T -+
u=1

Al=ujeA  jgA
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Analytic expression for

E( \N/i’|x) = " [E(c!, | YT =1) —x"]
N——— —

the mean field

Fir(r)

Adaptive dynamics

dx "

dt

_ Fir(X)[Cir(X) o Xir]

Cr(x) = F(N(x))
Nx) = (" (x)
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Simulation: 2 drivers X 2 routes

gl () [C(2) — x*7 (driver 1)
& = (ACHP) - xM]
e 13 ()C(xY) — x] (driver 2)
S = wAC () - X
™(x) exp(—Ax?)/[exp(—fx?) + exp(—Bx")]
m°(x) exp(—Bx") /[exp(—Bx°) + exp(—Bx")]
C(x) cim®(x) + c3m®(x)
C*(x) cfm®(x) + P (x)
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Simulation: 2 drivers X 2 routes

az| sk
s 20
sl 28
20} 27
o 28f 260
§ 8 sl
327 s 29)
H 3
@ 2af
26|
23
25f
22
24f
21
23}
of
22|
2 22 28 3 17 18 18 2 23 24 25 26

24 26 2.1 22
Belief arc A Belief arc A

B=1.0 B=25
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Simulation: 5 drivers x 3 routes

Belief arc C
Belief arc C

Belief arc B : o

Belief arc A

Belief arc B

Belief arc A
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Belief arc A
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Rest points — an underlying game

& = {rest points} = {x : x'" = C'"(x) for all i, r}

x = C(x) = T(N(x)) & { = ;é:))

Thus x & 7 bijects £ with IN(E) = {rest probabilities}
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Rest points — an underlying game

& = {rest points} = {x : x'" = C'"(x) for all i, r}

x = C(x) = T(N(x)) & { = ;é:))

Thus x & 7 bijects £ with IN(E) = {rest probabilities}

Theorem (C-Melo-Sorin'10)

N(E) = Nash equilibria of the N-person game with strategies ' € A(R)
and costs

G(m) = (x',Fi(m)) + 3> _a"[Ina" —1]
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Rest points — existence/uniqueness/convergence

Denote 0 = max, ,[c},—c/_;] the maximal congestion jump

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 48 / 108



Rest points — existence/uniqueness/convergence

Denote 0 = max, ,[c},—c/_;] the maximal congestion jump

Theorem (C-Melo-Sorin'10)

© There exist rest points
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Rest points — existence/uniqueness/convergence

Denote 0 = max, ,[c},—c/_;] the maximal congestion jump

Theorem (C-Melo-Sorin'10)
© There exist rest points

@ Exactly one of them is symmetric: X' = %"
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Rest points — existence/uniqueness/convergence

Denote 0 = max, ,[c},—c/_;] the maximal congestion jump

Theorem (C-Melo-Sorin'10)
© There exist rest points
@ Exactly one of them is symmetric: X' = %"

Q [i<?2 = X is the unique rest point and a local attractor
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Rest points — existence/uniqueness/convergence

Denote 0 = max, ,[c},—c/_;] the maximal congestion jump

Theorem (C-Melo-Sorin'10)
© There exist rest points
@ Exactly one of them is symmetric: X' = %"
Q [i<?2 = X is the unique rest point and a local attractor
Q Bi< ﬁ = X is a global attractor = P(x, — %) =1
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Potential function

Theorem (C-Melo-Sorin'10)
The map F admits a potential, namely F(m) = VH(m) where

H(r) =Y E(cf+ 5+ +cfp).
r
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Potential function

Theorem (C-Melo-Sorin'10)

The map F admits a potential, namely F(m) = VH(m) where

H(r) =Y E(cf+ 5+ +cfp).
r

Denote

Hp(m) = H(m)+ 5>, 7" In(x")
L(mA) = Hg(m) =3, N[, 7" —1]
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Equivalent Lagrangian dynamics

The adaptive dynamics can be written

O o 1 \(x)
where
Lix;\) = L(r(x,A\);\)
Wir(X,)\) — exp(—B(xir _ )\i))
N(x) = —AIn(, exp(—Bx"))
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Rest points as extremals

Theorem (C-Melo-Sorin'10)

For m = M(x) the following are equivalent

(a)

(b) ViL(x,A(x)) =0

(¢) m is a Nash equilibrium

(d) ViL(m,\) = 0 for some A\ € RM

(€) 7 is a critical point of Hz(-) on A(R)N

Moreover, if 36 < 1 then Hg(-) is strongly convex and & = 1(X) is its
unique minimizer on A(R)N.

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 51 / 108



Rest points — Bifurcation: 2 drivers x 2 routes

Symmetric equilibrium % is stable & | |4 > h(ﬂiA)

1 equilibrium

h(z)=v1—=z+ztanh’}y/1—z

3 equilibria | A=(G+) - (g+a)

X unstable A= (g—cf)+ (cf—cf)
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Bifurcation: 2 drivers x 2 routes

szl . . sk
a1l 29F
ab 281
20l 27
o 281 o 267
§ 8,5l
3 a7t 5 29
8 s
8
= 24t
26}
23f
25
221
24
21f
23f
o
22
2 22 28 3 17 18 19 2 23 24 25 26

2.4 26 2.1 22
Belief arc A Belief arc A

B=10 B =25
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State dependent update — Mario Bravo 2012

Players exploit memory of play for updating

; 1
XIr il

r irp -r ir
n — “n—-1— Qir Yn [Cu,’, _Xn]
n

with 6" the number of times route r has been used by i up to time n.
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State dependent update — Mario Bravo 2012

Players exploit memory of play for updating

Xir _Jir i
n n—1 =" pjr
9n

Yo lel, — xb]
with 6" the number of times route r has been used by i up to time n.
The empirical frequencies of play 7" = 0" /n satisfy the recursion

ir ir _ 1 . ir
Tp — Tph—1 = E(l{r,gzr} - 7Tn—l)
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State dependent update — Mario Bravo 2012

MB's process leads to the coupled adaptive dynamics

X" = nf’grx) C'r(x) — x'r
(CAD) i [C7(x) = x"]

7'rir — 7Tir(X) _ ﬂ_ir
Theorem (Bravo'12)
@ Same rest points: x* € £, 7" = 7(x*)
Q [i<?2 = convergence with positive probability

Q pi< ﬁ = almost sure convergence
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Comparison of discrete dynamics speeds

1O, ) = O 7)) vs - lxn = X7

OM’“‘ ‘ : ‘

0 5000 10000 15000 20000 25000
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Extensions and open problems

@ Extended to finite games and general discrete choice models

@ Applications to multipath TCP/IP protocol design
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Extensions and open problems

@ Extended to finite games and general discrete choice models

@ Applications to multipath TCP/IP protocol design

@ Open problems

o Almost sure convergence beyond bifurcation threshold?
Speed of convergence and large deviations?
Understand general structure of rest point bifurcation?
More realistic adaptive learning dynamics?
Connections with classical equilibrium models?
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TCP/IP

Internet traffic control — TCP/IP
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Reuiiis & Reies
TCP/IP — Single path routing

e G = (N, A) communication network
@ Each source s € S transmits packets from origin os to destination ds

@ Along which route? At which rate?

IP routers
€53
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TCP/IP — Current protocols

e Route selection (RIP/OSPF/IGRP/BGP/EGP)
Dynamic adjustment of routing tables
Slow timescale evolution (15-30 seconds)
Network Layer 3

e Rate control (TCP Reno/Tahoe/Vegas)
Dynamic adjustment of source rates — congestion window
Fast timescale evolution (100-300 milliseconds)
Transport Layer 4
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TCP/IP Routing & Rates

Congestion measures: link delays / packet loss

Switch/Router

e Links have random delays A, = X, + €, with E(e;) =0

Aa = queuing + transmission + propagation

@ And packet loss probabilities p, because of finite queuing buffers

R. Cominetti (UAI — Chile)

Input VoQ
Memory

Central
Crossbar

i

X

Input VoQ
Memory

Eiiiil]

Output Memory

[

Equilibrium Routing under Uncertainty
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TCP/IP Routing & Rates

TCP — Congestion window

TCP Peer A TCP Peer B

Packets «— Acks

Data
eum
dust sent Got #10, now
10 moud 411

)

Segment 1. s
| Seament

| Segment 3, se

| Segment 4. seq 4-a
Pm Pmt

congestion window W
Xs = source rate ~ L =2
round-trip time

Ts
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TCP — Congestion control

Sources adjust transmission rates in response to congestion

Basic principle: higher congestion < smaller rates

Aa : link congestion measure (loss pbb, queuing delay)
Xs : source transmission rate [packets/sec]
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TCP — Congestion control

Sources adjust transmission rates in response to congestion

Basic principle: higher congestion < smaller rates

Aa : link congestion measure (loss pbb, queuing delay)
Xs : source transmission rate [packets/sec]

Gs = Y ,esAa  (end-to-end congestion)
Ya = D 552 %s (aggregate link loads)
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TCP — Congestion control

Sources adjust transmission rates in response to congestion

Basic principle: higher congestion < smaller rates

Aa : link congestion measure (loss pbb, queuing delay)
Xs : source transmission rate [packets/sec]

Gs = Y ,esAa  (end-to-end congestion)
Ya = D 552 %s (aggregate link loads)

Decentralized algorithms

xtHl = Fy(xf,qt) (TCP - source dynamics)
AL = Go(AL,yE)  (AQM - link dynamics)
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Example: TCP-Reno / packet loss probability

AIMD control

Wit — WE+1 if WE packets are successfully transmitted
s [WE/2] one or more packets are lost (duplicate ack'’s)

t

Ts

= [ [,es(1—pL) = success probability (per packet)
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TCP/IP Congestion control

Example: TCP-Reno / packet loss probability
AIMD control

Wi WE+1 if WE packets are successfully transmitted
° [Ws/2]

one or more packets are lost (duplicate ack’s)

t _
g =

[1.cs(1—p) = success probability (per packet)
Additive congestion

measure

A t
q; = — In(7f) t t
= gt = A
N2 —in(1pp) [ 7T e
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Example: TCP-Reno / packet loss probability
AIMD control

Wit — WE+1 if WE packets are successfully transmitted
s [WE/2] one or more packets are lost (duplicate ack'’s)
7t = [[,es(1—p%) = success probability (per packet)
Additive congestion measure

—In(xl)

S

N

- [ p— )\t
PRI B ES St
Approximate model for rate dynamics

E(WS T IWE) ~ e W (W) 1) + (1 — e %) W /2]

t+1 _ t 1 —71sqixtt 2yt
= | x{ —X5+275{e I (xg + 2) — X

S
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Example: AQM / Droptail — RED-REM

Marking probability on links controlled by AQM
ps = wa(r3)
as a function of average queue length

rl = (1—a)rf +all

Mariing proaasiity

' —

congastion maausre

Loss probability vs. average queue length
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MUY
Network Utility Maximization

o Kelly, Maullo and Tan (1998) proposed an optimization-based model
for distributed rate control in networks.

@ Low, Srikant, etc. (1999-2002) showed that current TCP/AQM
control algorithms solve an implicit network optimization problem.

@ During last decade, the model has been used and extended to study
the performance of wired and wireless networks.
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TCP/IP NUM

Steady state equations

xH = Fi(xt, qb) (TCP - source dynamics)
AL = G\, yD) (AQM - link dynamics)
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TCP/IP NUM

Steady state equations

xs = Fs(xs,9s) (TCP — source equilibrium)
Aa = Gi(Aa,ya) (AQM - link equilibrium)
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U
Steady state equations

xs = Fs(xs,9s) (TCP — source equilibrium)
Aa = Gi(Aa,ya) (AQM - link equilibrium)

0

xs = 15(qs) (decreasing)
Aa = ¥a(ya) (increasing)
ds = Zaes )‘3

)/a = Zsaaxs
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MUY
Steady state equations

xs = Fs(xs,9s) (TCP — source equilibrium)
Aa = Gi(Aa,ya) (AQM - link equilibrium)

0

xs = 15(qs) (decreasing)

Aa =a(ya)  (increasing) o] = fs(Daes Aa)
ds = Zaes Aa As = 1/}3(2533 XS)
Ya = ZssaXS

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 67 / 108



U
Examples

TCP-Reno | (loss probability)

g = f'06) 2 o1+

Aa = wa(y‘a) S %
TCP-Vegas | (queueing delay)

qs = fs_l(XS) £ O:T:S

Aa = ¢a(}/a) £ Ca%aﬁ
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TCP/IP NUM

Steady state — Primal optimality

Xs =fs (Zaes 3)
Aa = Va(D 54 %)

fl (%) = Yaes Ao = Laes Yal(Xusa Xu)

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 69 / 108



TCP/IP NUM

Steady state — Primal optimality

Xs =fs (Zaes a)
Aa = Va(D 54 %s)

fit (%) = Laes Ao = Paes Va(Dusa Xu)

= optimal solution of strictly convex program

(P)

mxin ZSGS Us(xs) + ZaeA wa(zsaa Xs)

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty

69 / 108



TCP/IP NUM

Steady state — Dual optimality

Xs = f;(zaes)‘ )
Aa = 1a(D5, %)

wz:l()‘a) = Essa Zssa (ZbES >‘b)
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U
Steady state — Dual optimality

Xs = @(2365)‘ )
Aa = ¥a(D52 %)

wz:l()‘a) = Essa Zssa (ZbES >‘b)

= optimal solution of strictly convex program

(D)

m)\in ZaeA Vi(Aa) + Zses US*(ZQES Aa)
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U
Theorem (Low'2003)

Xs = fs(D 0 es Aa) x and X are optimal solutions
Aa = Va(D s, Xs) for (P) and (D) respectively
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U
Theorem (Low'2003)

xs = (D05 Aa) x and \ are optimal solutions

acs 7'a
Aa = Va(D s, Xs) for (P) and (D) respectively

Relevance:
@ Reverse engineering of existing protocols / forward engineering (fs, 1)
@ Design distributed stable protocols to optimize prescribed utilities

@ Flexible choice of congestion measure gs
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U
Theorem (Low'2003)

xs = (D05 Aa) x and \ are optimal solutions

acs 7'a
Aa = Va(D s, Xs) for (P) and (D) respectively

Relevance:
@ Reverse engineering of existing protocols / forward engineering (fs, 1)
@ Design distributed stable protocols to optimize prescribed utilities

@ Flexible choice of congestion measure gs

Limitations:
@ Ignores delays in transmission of congestion signals
@ Improper account of stochastic phenomena

@ Single-path routing
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KErkovEn (UK
Markovian Network Utility Maximization (MNUM)

Increase transmission rates: single path — multi-path
Goal: design distributed TCP protocols with multi-path routing

Packet-level protocol that is stable and satisfies optimality criteria

Model based on the notion of Markovian traffic equilibrium
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TCP/IP Markovian NUM

MNUM: integrated routing & rate control

@ Cross-layer design: routing + rate control
@ Based on a common congestion measure: delay

o Link random delays A\, = A, + €, with E(es) =0

A, = queuing + transmission + propagation

Input VoQ
Memory

ﬂ G| I
Crossbar

Output Memory

X s

Input VoQ Output Memory
Memory

Central
il i
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KErkovEn (UK
MNUM: Markovian multipath routing

At switch i, packets headed to destination d are routed through the
outgoing link a € Afr that minimizes the “observed” cost-to-go

d H 3

77 = min, )\ TJ
>d
a
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KErkovEn (UK
MNUM: Markovian multipath routing

At switch i, packets headed to destination d are routed through the
outgoing link a € Afr that minimizes the “observed” cost-to-go

d H 3

77 = min, )\ TJ
>d
a

Markov chain with transition matrix

pd _ [ P2 <z ¥beAf) fi=inj=]
I otherwise

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 74 / 108



TCP/IP Markovian NUM

Expected flows (invariant measures)

The flow gbj-j entering node i and directed towards d

¢,d = ZOs:i Xs + ZaGAf Vg

ds=d

splits among the outgoing links a = (/, ) according to
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KErkovEn (UK
Expected costs

Letting zZd = E(29) and 77 = E(77), we have

Zg =X+ 7:;:
T/d = ‘P?(Zd)

with

£9(2%) £ E(minep0 (28 + )
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TCP/IP Markovian NUM

Expected costs

Letting zZd = E(29) and 77 = E(77), we have

d __ d
z$ —)\a—i—Tja

T/d = ‘P?(Zd)
with
@?(29) £ E(min,ca+ [25 + €5])
Moreover J
0°
P (2 <2 vbeAT) = 50

a
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KErkovEn (UK
Markovian NUM — Definition

xs = fs(gs)  (source rate control)

Aa = ¥a(ya) (link congestion)

Ya= .4 vg (total link flows)

Qs = Ts — TSO (end-to-end queuing delay)

ds

where 75 = 755 with expected costs given by

)\—i—T
(2Q) { ¢ =of(z )

and expected flows v¥ satisfying

¢>$’=ng X+ Yea- Vs Vi d
(FC) ¢d o ( ) Vac AT

i 9z4
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TCP/IP Markovian NUM

MNUM Characterization: Dual problem

o (ZQ) defines implicitly zZ and 7¢ as concave functions of A
e xs = f5(qs) with gs = ’Td:()\) - Tg:()\o) yields xs as a function of A

[

o (FC) then defines v¢ as functions of A
MNUM conditions < 97 (\5) = ya = D4 vI(N)

Theorem
MNUM < optimal solution of the strictly convex program

(D) min Do Vi(ha) + ) Ui(as(N)

acA seS
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TCP/IP Markovian NUM

MNUM Characterization: Primal problem

Theorem
MNUM < optimal solution of

min ZU xs)+ ) Walya) + D x(v

P
(xy.v)e acA deD
where
d
=sup ) (pf(z%) - Z)v;
z9 acA

and P is the polyhedron defined by flow conservation constraints.
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Risk-averse routing

Risk averse routing
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What is the risk of a path?
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Risk-averse routing

Copenhagen — DTU Transport (www.transport.dtu.dk)

Figure 2: Example of real time illustration of congestion (Source:
Vejdirektoratet, www.trafikken.dk)
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Risk-averse routing

Adelaide, South Australia (Susilawati et al. 2011)

Day to day variation in JTW travel times
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Risk-averse routing

Previous: Normal, Log-normal, Gamma, Weibull
Best fit: Burr distribution F(x) =1 — (14 x¢)~k

L Hi and fitted Burr distribution for Link 3 u
Glen Osmond travel time data

Burr distribution and observed cumulative density functions for the Burr distribution and observed cumulative density functions for the
South Road route travel times Glen Osmond Road route travel times
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Some recent literature on risk averse routing

[1]
2]
(3]
[4]
(5]
[6]
[7]

Loui — Optimal paths in graphs with stochastic or multidimensional weights.
Commun. ACM 26(9), 1983.

Bates et al. — The evaluation of reliability for personal travel.
Transportation Research E 37, 2001.

Noland, Polak — Travel time variability: a review of theoretical and empirical
issues. Transport Reviews 22, 2002.

Hollander — Direct versus indirect models for the effects of unreliability.
Transportation Research A 40, 2006.

Nie, Wu — Shortest path problem considering on-time arrival probability.
Transportation Research A 40, 2006.

Ordénez & Stier-Moses — Wardrop equilibria with risk-averse users.
Transportation Science 44(1), 2010.

Engelson & Fosgerau — Additive measures of travel time variability.
Transportation Research B 45, 2011.

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 85 / 108



Risk-averse routing

Some recent literature on risk averse routing

[8] Nie — Multiclass percentile user equilibrium with flow dependent
stochasticity. Transportation Research B 45(10), 2011.

[9] Wu, Nie — Modeling heterogeneous risk-taking behavior in route choice.
Transportation Research A 45(9), 2011.

[10] Nie, Wu, Homem-de-Mello — Optimal path problems with second-order
stochastic dominance constraints. Networks & Spatial Economics 12(4),
2012.

[11] Nikolova & Stier-Moses — A mean-risk model for the traffic assignment
problem with stochastic travel times. Operations Research 62(2), 2014.

[12] Jaillet, Qi & Sim — Routing optimization with deadlines under uncertainty.
To appear in Operations Research.

[13] Cominetti, Torrico — Additive consistency of risk measures and its
application to risk-averse routing in networks. To apear in Mathematics of
Operations Research.
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In this session. ..

©@ How do we measure the risk of a path?

@ Some risk measures — paradoxes and drawbacks
© Additive consistency — entropic risk measures

© Remarks — optimal paths and network equilibrium

© Remarks — dynamic risk measures

R. Cominetti (UAI — Chile) Equilibrium Routing under Uncertainty 87 / 108



Setting

@ Bounded random variables: X € L*°(Q, F,P)
@ Preferences: X XY < ¢(X) < d(Y)

@ Scalar measure of risk: ®(X) € R
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Risk-averse routing Some popular risk measures

Some popular risk measures

d(X) = ux +vox (Markowitz)

#(X) = VaRy(X) = (1—p)-percentile (Value-at-Risk)

#(X) = AVaR,(X) = E[X|X > VaR,(X)] (Average VaR)
" b
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INESEWIEWEN-A Some popular risk measures

Two natural axioms

Monotonicity
if X <Y almost surely then ¢(X) < ¢(Y)
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Risk-averse routing Some popular risk measures

Two natural axioms

Monotonicity
if X <Y almost surely then ¢(X) < ¢(Y)

Additive consistency
if p(X) < @(Y) then ¢(Z+X) < p(Z+Y) forall Z L (X,Y).

o*a__x
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Risk-averse routing Some popular risk measures

Two natural axioms

Monotonicity
if X <Y almost surely then ¢(X) < ¢(Y)

Additive consistency
if p(X) < @(Y) then ¢(Z+X) < p(Z+Y) forall Z L (X,Y).

o*a__x

Additive consistency fails for Markowitz, VaR, CVaR.
Markowitz not even monotone.
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How to measure risk: mean-stdev (Markowitz 1952)

7'ga gb gc
O——O——O0——0
X = ZaEr %3

O (X)=p+y0 =) ,c  la +7\/m
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How to measure risk: mean-stdev (Markowitz 1952)

7'ga Eb gc
O——O——0O——0
X = ZaEr %3

O (X)=p+y0 =) c la +7\/m

Optimal path: O(n'°8") subexponential algorithm (Nikolova'2010)
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Risk-averse routing Some popular risk measures

How to measure risk: mean-stdev (Markowitz 1952)

CANGELINGEING
X = ZaEr %3
Oy(X) = p+70 =2 e, Hat Y\ 2aer O3
Optimal path: O(n'°8") subexponential algorithm (Nikolova'2010)

DRAWBACKS:
@ Lack of monotonicity
@ Lack of additive consistency

@ Bellman'’s principle fails: finding optimal paths is hard
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Risk-averse routing Some popular risk measures

Lack of monotonicity

X ~ U(0,1)

N
N

Y =3(1+X)

Hence Y > X a.s. but for v = 12 we have

(V) = § <0, (X) =
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Risk-averse routing Some popular risk measures

Lack of additive consistency

X

N
N z

Y

If ®(X) < ®(Y) and Z independent... then ®(X+2) < d(Y+2)7?
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Risk-averse routing Some popular risk measures

Lack of additive consistency

X

N
N z

Y

If ®(X) < ®(Y) and Z independent... then ®(X+2) < d(Y+2)7?
Not necessarily! Consider v =1 and
X ~N(10.9,1) ; Y ~N(10,4) ; Z~ N(10,1)

P(X)=11.9 < &(Y) =120
O(X+2)=223 > B(Y+2Z)=222
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How to measure risk: Value-at-Risk (.. .late 1980s)

d(X) = VaR,(X) = F)?l(l —a) = (1 — a)-percentile

It is monotone. Coincides with mean-stdev for Normal distributions =
@ Not additive consistent

@ Bellman's principle fails: finding optimal paths is hard
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Risk-averse routing Some popular risk measures

How to measure risk: Average Value-at-Risk
(Artzner et al. 1999; Rockafellar and Uryasev 2000)

B(X) = AVaRy(X) = = /a VaR,(X)dt = E[X|X > VaRu(X)]
0

(07

It is monotone. Coincides with mean-stdev for Normal distributions =
@ Not additive consistent

@ Bellman's principle fails: finding optimal paths is hard
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Risk-averse routing Coherent risk measures

How to measure risk: Coherent risk measures
(Artzner et al. 1999)

A map ¢ : L*°(Q, F,P) — R is a risk measure if $(0) =0 and it is

e Monotone: X <Y as. = ¢(X) < d(Y)
e Translation invariant: m € R = &(X + m) = &(X)+ m
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Risk-averse routing Coherent risk measures

How to measure risk: Coherent risk measures
(Artzner et al. 1999)

A map ¢ : L*°(Q, F,P) — R is a risk measure if $(0) =0 and it is
e Monotone: X <Y as. = ¢(X) < d(Y)
e Translation invariant: m € R = &(X + m) = &(X)+ m

coherent: if ® is sublinear

convex: if ® is convex

risk averse: if P(EX) < d(X)

additive: if (X+Y) = &(X)+P(Y) whenever X L Y
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Risk-averse routing Coherent risk measures

How to measure risk: Coherent risk measures
(Artzner et al. 1999)

A map ¢ : L*°(Q, F,P) — R is a risk measure if $(0) =0 and it is
e Monotone: X <Y as. = ¢(X) < d(Y)
e Translation invariant: m € R = &(X + m) = &(X)+ m

coherent: if ® is sublinear

convex: if ® is convex

risk averse: if P(EX) < d(X)

additive: if (X+Y) = &(X)+P(Y) whenever X L Y
Remark:

e Trans. inv. & ®(m)=m and ®(X)<P(Y) = &(X+m)<d(Y+m)
e Under translation invariance “additive < additive consistent”
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Risk-averse routing Expected utility

How to measure risk: Expected utility
(Bernoulli 1738; Kolmogorov 1930; Nagumo 1931; de Finetti 1931;
von Neuman-Morgenstern 1947)

For ¢ : R — R increasing the expected utility map
dc(X) = ¢ HE (X))

is monotone, weakly continuous and satisfies the independence axiom
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Risk-averse routing Expected utility

How to measure risk: Expected utility
(Bernoulli 1738; Kolmogorov 1930; Nagumo 1931; de Finetti 1931;
von Neuman-Morgenstern 1947)

For ¢ : R — R increasing the expected utility map
®e(X) = cHEc(X))
is monotone, weakly continuous and satisfies the independence axiom

(1A) O(X) < O(Y) = (L(p, X, Z)) < O(L(p, Y, Z)).

X
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Risk-averse routing Expected utility

How to measure risk: Expected utility
(Bernoulli 1738; Kolmogorov 1930; Nagumo 1931; de Finetti 1931;
von Neuman-Morgenstern 1947)

For ¢ : R — R increasing the expected utility map
®e(X) = cHEc(X))
is monotone, weakly continuous and satisfies the independence axiom

(1A) O(X) < O(Y) = (L(p, X, Z)) < O(L(p, Y, Z)).

REMARKS:

e These properties characterize expected utility preferences
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Risk-averse routing Expected utility

How to measure risk: Expected utility
(Bernoulli 1738; Kolmogorov 1930; Nagumo 1931; de Finetti 1931;
von Neuman-Morgenstern 1947)

For ¢ : R — R increasing the expected utility map
®e(X) = cHEc(X))
is monotone, weakly continuous and satisfies the independence axiom

(1A) O(X) < O(Y) = (L(p, X, Z)) < O(L(p, Y, Z)).

REMARKS:
e These properties characterize expected utility preferences

e Risk-aversion = exaggerate effect of bad events — ¢(-) convex
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Risk-averse routing Expected utility

How to measure risk: Expected utility
(Bernoulli 1738; Kolmogorov 1930; Nagumo 1931; de Finetti 1931;
von Neuman-Morgenstern 1947)

For ¢ : R — R increasing the expected utility map
®e(X) = cHEc(X))
is monotone, weakly continuous and satisfies the independence axiom

(1A) O(X) < O(Y) = (L(p, X, Z)) < O(L(p, Y, Z)).

REMARKS:
e These properties characterize expected utility preferences
e Risk-aversion = exaggerate effect of bad events — ¢(-) convex

e But ®. is not translation invariant, hence not a risk measure !
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Entropic Risk Measures

Theorem

The only expected utility maps ®. that are translation invariant — and
hence risk measures — are the [3-entropic risk measures

®5(X) = §In(E ™).

associated with c(x) = e%* where —oco < 8 < oo.
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Risk-averse routing Expected utility

Entropic Risk Measures

Theorem

The only expected utility maps ®. that are translation invariant — and
hence risk measures — are the [3-entropic risk measures

®5(X) = §In(E ™).

associated with c(x) = e%* where —oco < 8 < oo.

REMARKS:

e Under more restrictive conditions similar results by Gerber'1974,
Luan'2001, Heilpern'2003
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Risk-averse routing Expected utility

Entropic Risk Measures

Theorem

The only expected utility maps ®. that are translation invariant — and
hence risk measures — are the [3-entropic risk measures

®5(X) = §In(E ™).

associated with c(x) = e%* where —oco < 8 < oo.

REMARKS:

e Under more restrictive conditions similar results by Gerber'1974,
Luan'2001, Heilpern'2003

e g is also additive and hence additive consistent
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Risk-averse routing Expected utility

Entropic Risk Measures

Theorem

The only expected utility maps ®. that are translation invariant — and
hence risk measures — are the [3-entropic risk measures

®5(X) = §In(E ™).

associated with c(x) = e%* where —oco < 8 < oo.

REMARKS:

e Under more restrictive conditions similar results by Gerber'1974,
Luan'2001, Heilpern'2003

e g is also additive and hence additive consistent

e For § > 0 it is convex and risk averse
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Risk-averse routing Expected utility

Entropic Risk Measures

Theorem

The only expected utility maps ®. that are translation invariant — and
hence risk measures — are the [3-entropic risk measures

®5(X) = §In(E ™).

associated with c(x) = e%* where —oco < 8 < oo.

REMARKS:

e Under more restrictive conditions similar results by Gerber'1974,
Luan'2001, Heilpern'2003

e g is also additive and hence additive consistent
e For § > 0 it is convex and risk averse

e Coherent only for ®o(X) = E(X)
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Sketch of Proof

From &.(m+zB,) = m+®.(zB,) with B, Bernoulli we get
differentiability of ¢(-) and the functional equation

c'(0)[c(m+2)—c(m)] = ¢'(m)[e(2) - c(0)]

whose solutions are c(x) = e%* (up to an affine transformation). O
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Risk-averse routing Dual theory of choice

How to measure risk: Dual theory of choice
(Allais 1953; Yaari 1987)

Let h:[0,1] — [0, 1] increasing, h(0) = 0, h(1) = 1. The h-distorted risk

measure is defined by
oh(X) = E(Xh)

where X" is a random variable with distribution
P(X" < x) = h(P(X < x)).

Risk-aversion = exaggerate the probability of bad events — h(s) <'s
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Risk-averse routing Dual theory of choice

How to measure risk: Dual theory of choice
(Allais 1953; Yaari 1987)

Let h:[0,1] — [0, 1] increasing, h(0) = 0, h(1) = 1. The h-distorted risk
measure is defined by
oh(X) = E(Xh)

where X" is a random variable with distribution

P(X" < x) = h(P(X < x)).
Risk-aversion = exaggerate the probability of bad events — h(s) <'s
These measures are characterized by the dual independence axiom:
(DIA) O(X)<P(Y)= d(aX+(1-a)2) < P(aY + (1—a)2)
for all X, Y, Z pairwise co-monotonic.
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Rt clpenel: utilfiy
How to measure risk: Combine utility & distortion
(Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function ¢ : R — R and a distortion map h: [0,1] — [0, 1]
®YX) = cTHEc(XM).

Wakker: Rank dependent utilities
Characterized by weaker independence axiom: tradeoff consistency.
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How to measure risk: Combine utility & distortion
(Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function ¢ : R — R and a distortion map h: [0,1] — [0, 1]
®YX) = cTHEc(XM).

Wakker: Rank dependent utilities
Characterized by weaker independence axiom: tradeoff consistency.

Translation invariance holds for all h but imposes c(x) = e’
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How to measure risk: Combine utility & distortion
(Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function ¢ : R — R and a distortion map h: [0,1] — [0, 1]
®YX) = cTHEc(XM).

Wakker: Rank dependent utilities
Characterized by weaker independence axiom: tradeoff consistency.

Translation invariance holds for all h but imposes c(x) = e’
If we also ask for additive consistency then h(s) =s.
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How to measure risk: Combine utility & distortion
(Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function ¢ : R — R and a distortion map h: [0,1] — [0, 1]
®YX) = cTHEc(XM).

Wakker: Rank dependent utilities
Characterized by weaker independence axiom: tradeoff consistency.

Translation invariance holds for all h but imposes c(x) = e’
If we also ask for additive consistency then h(s) =s.

Theorem

The only maps ®" that are additive consistent are the entropic risk
measures ®g

REMARK: Under smoothness assumptions this result was obtained by Luan'2001,
Heilpern'2003, Goovaerts-Kaas-Laeven-Tang'2010
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Risk-averse routing Rank dependent utility

Sketch of Proof
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Sketch of Proof

Step 1: From ®/(m + zB,) = m + ®/(zB,) we get
c'(0)[e(m+2z)—c(m)] = ¢'(m)[c(2) — c(0)]

as before so that c(x) = .
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Sketch of Proof

Step 1: From ®/(m + zB,) = m + ®/(zB,) we get
c'(0)[c(m+2)—c(m)] = ¢'(m)[e(2) — c(0)]

as before so that c(x) = .

Step 2: From ®/(zB, + zB,) = ®1(zB,) + ®/(zB,) we get

h(pg) = h(p)h(q)
h(p) + h(q) = h(p)h(q) + h(1 - pq)

with unique solution h(s) = s.
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Computing entropic optimal paths

Let G = (V, A) with all the %,'s independent. By additive consistency, the
risk of the random time X = >___ %, of a path r satisfies

acr

®5(X) =) Ps(t).

acr

= optimal paths = shortest paths with lengths £, = ®3(%,).
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Computing entropic optimal paths

Let G = (V, A) with all the %,'s independent. By additive consistency, the
risk of the random time X = >___ %, of a path r satisfies

acr

®5(X) =) Ps(t).

acr

= optimal paths = shortest paths with lengths £, = ®3(%,).

COMMENT: Dependent case yields a stochastic dynamic programming
recursion solved by conditional expectation

¢5(X + Y) = q)ﬁ(X + ¢g(Y|X)).
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Routing games with entropic risk averse players

If the distribution £, ~ F(v,) depends on the load v, of link a so that
®5(t2) = ga(va) is an increasing function of v,, then

@ non-atomic equilibrium falls into Wardrop's framework

@ the atomic case is a special case of Rosenthal's framework
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Dynamic risk measures & consistency

Consider a sequence of payoffs X; € Z; = L*°(Q, F;,[P) adapted to a
filtration Fo C F1 C--- C Fr C F.
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Risk-averse routing Dynamic risk measures

Dynamic risk measures & consistency
Consider a sequence of payoffs X; € Z; = L*°(Q, F;,[P) adapted to a
filtration Fo C F1 C--- C Fr C F.

A sequence of conditional risk measures p; : Z; — Z;_1 which are
e monotone: X <Y = pi(X) < pe(Y)

e predictable invariant. ps(X +Y) = p:(X)+ Y for Y € Z;_1
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Risk-averse routing Dynamic risk measures

Dynamic risk measures & consistency

Consider a sequence of payoffs X; € Z; = L*°(Q, F;,[P) adapted to a
filtration Fo C F1 C--- C Fr C F.

A sequence of conditional risk measures p; : Z; — Z;_1 which are
e monotone: X <Y = pi(X) < pe(Y)

e predictable invariant. ps(X +Y) = p:(X)+ Y for Y € Z;_1

is called dynamically consistent if the nested risk transition maps

RtT(Xh ooy XT) = pe(Xe + pryr(Xegr + - + p7(X7)))
are such that
RtT(Xta”'vxT) < Rt_‘T(Yta”'vyT)

I
Rttl(Z’Xta s 7XT) < Rt-cl(zv Yt, ey YT)
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Routing stages & recursive AVaR 7

Z~N(10,1.5)

p1(X + p2(Y)) > p1(2)
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Routing stages & recursive AVaR 7

X 4 Y ~N(10,v2)

TN
S

Z~N(10,1.5)

pi(X+Y) < p1(2)
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Risk-averse routing Dynamic risk measures

This is the end... !
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