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Introduction

Question: control traffic flows and congestion

INTERNET
294.000.000.000 mails/day
2.000.000.000 videos/day
8.500.000.000 webpages
2.100.000.000 users
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Introduction

Question: control traffic flows and congestion

INTERNET Backbone
193.000.000 domains
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Introduction

Equilibrium: Wardrop’s basic idea... 1952

t1 = s1(w1)

g ⇒ ⇒ g

t2 = s2(w2)

t =s (w )1 1 1

w1

t =s (w )2 2 2

gw2


g = w1 + w2

w1 > 0⇒ t1 ≤ t2

w2 > 0⇒ t2 ≤ t1
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Introduction

Outline

...1 Equilibrium models

...2 Adaptive learning

...3 TCP/IP protocols

...4 Risk-averse routing
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Equilibrium

Deterministic & stochastic equilibrium models
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Equilibrium Wardrop

Wardrop Equilibrium (Wardrop’52)

Given


network (N,A)
arc travel times ta = sa(wa)
travel demands gd

i ≥ 0
routes Rd

i

Split gd
i =

∑
r∈Rd

i
xr with xr ≥ 0 so that only shortest routes are used

xr > 0 ⇒ Tr = τdi

where

τdi = minr∈Rd
i
Tr (minimal time)

Tr =
∑

a∈r sa(wa) (route times)

wa =
∑

r∋a xr (total arc flows)
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Equilibrium Wardrop

Variational characterization (Beckman-McGuire-Winsten’56)

.
Theorem
..

.

. ..

.

.

(w∗
a )a∈A Wardrop equilibrium ⇔ optimal solution of

(P)

 Min
∑
a

∫ wa

0
sa(z) dz

s.t. flow conservation
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Equilibrium Wardrop

Proof

r ∈ Rd
i , xr > 0⇒ Tr = minp∈Rd

i
Tp is equivalent to∑

(i ,d)

∑
r∈Rd

i

Tr (x̃r − xr ) ≥ 0 for all feasible x̃

∑
(i ,d)

∑
r∈Rd

i

∑
a∈r

sa(wa)(x̃r − xr ) ≥ 0 for all feasible x̃

Exchanging the order of summation this becomes∑
a∈A

∑
(i ,d)

∑
r∈Rd

i ,r∋a

sa(wa)(x̃r − xr ) ≥ 0 for all feasible x̃
∑
a∈A

sa(wa)(w̃a − wa) ≥ 0 for all feasible x̃

which are precisely the optimality conditions for the convex program

min
w feasible

∑
a∈A

∫ wa

0
sa(z)dz

�
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Equilibrium Wardrop

Variational characterization (Beckman-McGuire-Winsten’56)

.
Theorem
..

.

. ..

.

.

(w∗
a )a∈A Wardrop equilibrium ⇔ optimal solution of

(P)

 Min
∑
a

∫ wa

0
sa(z) dz

s.t. flow conservation

.
Corollary
..

.

. ..

.

.

...1 There exists a Wardrop equilibrium w∗

...2 Equilibrium travel times t∗a = sa(w
∗
a ) are unique

...3 If sa(·) strictly increasing ⇒ w∗ unique
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Equilibrium Wardrop

Dual characterization (Fukushima’84)

Change of variables: wa ↔ ta

(D) Min
t

∑
a

∫ ta

0
s−1
a (z) dz −

∑
i ,d

gd
i τ

d
i (t)︸ ︷︷ ︸

ϕ(t)
strictly convex

t 7→ τdi (t) = minimum travel time
concave, non-smooth, polyhedral

τdi = min
a∈A+

i

[ta + τdja ] Bellman’s equations
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Equilibrium Wardrop

Method of Successive Averages

Algorithm 1 MSA - main iteration

1: Compute tna = sa(w
n
a )

2: Assign gd
i to shortest routes

3: Compute arc flows w̃n
a = Φa(w

n)
4: Update wn+1 = (1−αn)w

n + αnw̃
n

Wardrop equilibrium ≡ Fixed point of Φ
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Equilibrium SUE

What if travel times are uncertain?

Copenhagen – DTU Transport (www.transport.dtu.dk)
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Equilibrium SUE

Stochastic User Equilibrium (Dial’71, Fisk’80)

Drivers have different perceptions of route costs

T̃r = Tr + ϵr

τ̃di = minr∈Rd
i
T̃r

}
random
variables

Demand splits according to the pbb of each route being optimal

xr = gd
i P(T̃r = τ̃di )

with ta = sa(wa) and wa =
∑

r∋a xr as before
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Equilibrium SUE

Logit model (Dial’71, Fisk’80)

ϵr i.i.d. Gumbel noise (supported by Gnedenko’s theorem)

xr = gd
i

exp(−βTr )∑
s∈Rd

i
exp(−βTs)

Drawbacks: independence is unlikely & tractable only for small networks

Probit model (Daganzo’82)

ϵr correlated Normal noise
No closed form equations ⇒ Montecarlo

Drawback: tractable only for very small networks
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Equilibrium SUE

Discrete choice models

Finite set of alternatives i ∈ I with random costs z̃i =zi+εi .

Choose alternative of minimum cost. The expected cost is

φ(z) = E[min
i∈I

(zi+εi )]

.
Proposition
..

.

. ..

.

.

...1 φ is a concave finite function

...2 If (εi )i∈I has continuous distribution then φ is smooth with

P(zi+εi optimal) =
∂φ

∂zi
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Equilibrium SUE

Example: Multinomial Logit, εk ∼ i.i.d. Gumbel

φ(z) = − 1
β ln[

∑
j exp(−βzj)]

∂φ

∂zk
=

exp(−βzk)∑
j exp(−βzj)

R. Cominetti (UAI – Chile) Equilibrium Routing under Uncertainty 19 / 108



Equilibrium SUE

Dual characterization of SUE

(D) Min
t

∑
a

∫ ta

0
s−1
a (z) dz −

∑
i ,d

gd
i τ

d
i (t)︸ ︷︷ ︸

ϕ(t)
strictly convex

t 7→ τdi (t) = expected minimum travel time
concave, smooth

τdi (t) = E[ min
r∈Rd

i

Tr+εr ]
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Equilibrium MTE

Markovian Traffic Equilibrium (Akamatsu’00, Baillon-C’06)

Routing as a stochastic dynamic programming process

t̃a = ta + ϵa

T̃r =
∑

a∈r t̃a

τ̃di = minr∈Rd
i
T̃r


random
variables

At every intermediate node i , users select a random optimal arc

argmin
a∈A+

i

t̃a + τ̃dja

⇒ Markov chain for each destination d
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Equilibrium MTE

MTE equations

Expected in-flow

xdi = gd
i +

∑
a∈A−

i
vda

leaves node i according to

vda = xdi P(t̃a + τ̃dja ≤ t̃b + τ̃djb ∀ b ∈ A+
i )

with ta = sa(wa) and wa =
∑

d v
d
a
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Equilibrium MTE

Variational formulation

τ̃di = min
a∈A+

i

{t̃a + τ̃dja}

.
Theorem (Baillon-C’06)
..

.

. ..

.

.

τdi = E(τ̃di ) is the unique solution of the stochastic Bellman equations{
τdd = 0

τdi = E(mina∈A+
i
{ta + τdja + εda})

Moreover t 7→ τdi (t) is concave & smooth.
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Equilibrium MTE

Variational formulation

.
Theorem (Baillon-C’06)
..

.

. ..

.

.

MTE is characterized by

(D) Min
t

ϕ(t) ,
∑
a

∫ ta

0
s−1
a (x) dx −

∑
i ,d

gd
i τ

d
i (t)

...same form as Wardrop equilibrium!
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Equilibrium MTE

Method of Successive Averages

Algorithm 2 MSA - main iteration

1: Compute current arc travel times tna = sa(w
n
a )

2: Solve stochastic Bellman’s equations
3: Compute invariant measures of Markov chains ṽda
4: Aggregate flows w̃n

a =
∑

ṽda
5: Update wn+1 = (1−αn)w

n + αnw̃
n

wn+1−wn

αn
= −∇ϕ(tn) = −D(wn)−1∇ϕ̃(wn)

.
Theorem (Baillon-C’06)
..

.

. ..

.

.

∑
αn =∞ and

∑
α2
n <∞⇒ convergence to MTE
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Equilibrium MTE

Stochastic MSA iterations

0 50 100 150 200 250
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Absolute precision :  log(||wk−wk||)
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Equilibrium MTE

Stochastic MSA-Newton iterations
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Equilibrium Nash

Atomic equilibrium in congestion games

A finite set of players i ∈ I traveling from oi to di

Each player i selects a path ri ∈ Ri

These choices induce arc loads ua = #{i : a ∈ ri}
Player i experiences a travel time ci (ri , r-i ) =

∑
a∈ri sa(ua)

.
Definition
..

.

. ..

.

.

A pure Nash equilibrium is a strategy profile (ri )i∈I so that for each i

ci (ri , r-i ) ≤ ci (r
′
i , r-i ) ∀ r ′i ∈ Ri

Example: 50%-50% split between 2 identical routes
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Equilibrium Nash

Mixed equilibrium

Mixed strategies πi = (πir )r∈Ri
∈ ∆(Ri )

Expected costs

ci (π
i , π−i ) = Eπ(ci (ri , r-i )) =

∑
r∈Ri

πir
∑
a∈r

E(sa(1 + u−i
a )).

where u−i
a = #{j ̸= i : a ∈ rj}.

.
Definition
..

.

. ..

.

.

A mixed Nash equilibrium is a strategy profile (πi )i∈I so that for all i

ci (π
i , π−i ) ≤ ci (r , π

−i ) ∀ r ∈ ∆(Ri )

Multiple mixed equilibria. . . Examples with 2 identical routes
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Equilibrium Nash

Rosenthal’s potential

.
Theorem (Rosenthal’73)
..

.

. ..

.

.

Consider the potential function

Φ((ri )i∈I ) =
∑
a∈A

ua∑
j=1

sa(j).

Then for each player i ∈ I and every alternative path r ′i ̸= ri

Φ(r ′i , r-i )− Φ(ri , r-i ) = ci (r
′
i , r-i )− ci (ri , r-i ).

.
Corollary
..

.

. ..

.

.

a) There exist pure Nash equilibria: any (local) minimum of Φ(·)
b) Best response dynamics converge in finitely many iterations to a Nash

equilibrium in pure strategies. . . but require full information !
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Equilibrium Nash

Rosenthal’s potential – Proof

If player i changes from ri to r ′i the new loads are

u′a =


ua+1 for a ∈ r ′i \ ri
ua−1 for a ∈ ri \ r ′i
ua otherwise

Φ(r ′i , r-i )− Φ(ri , r-i ) =
∑

a∈r ′i \ri

sa(ua+1)−
∑

a∈ri\r ′i

sa(ua)

=
∑
a∈r ′i

sa(u
′
a)−

∑
a∈ri

sa(ua)

= ci (r
′
i , r-i )− ci (ri , r-i )

�
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Learning

Adaptive dynamics and equilibrium
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Learning Adaptive dynamics in routing games

Dynamical models that sustain equilibrium? (C-Melo-Sorin’10)

i = 1, . . . ,N drivers

r = 1, . . . ,M routes

... ...1, 2, . . . ,N

.1

.2

.M

c ru = travel time of route r under a load of u drivers
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Learning Adaptive dynamics in routing games

Adpative dynamics in repeated games

Fictitious play, stochastic fictitious play, reinforcement dynamics, replicator
dynamics, asymptotic calibration... dozens of papers in last 20 years

Fudenberg D., Levine D.K., The Theory of Learning in Games
MIT Press (1998)

Hofbauer J., Sigmund K., Evolutionary Games and Population Dynamics
Cambridge University Press (1998)

Young P., Strategic Learning and its Limits
Oxford University Press (2004)

Sandholm W., Population Games and Evolutionary Dynamics

Forthcoming (2011)
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Learning Adaptive dynamics in routing games

Discrete stochastic adaptive learning process

State variable: x ir = perception of driver i on route r

Random choice: Y ir =

{
1 if i takes route r
0 otherwise

πir = P(Y ir =1) =
exp(−βx ir )∑
ℓ exp(−βx iℓ)

Route loads: ur =
∑

i Y
ir

Dynamics:

x irn−1  πirn  Y ir
n  urn  c rurn  x irn

state pbb’s routes loads costs update
x irn =

 (1−αn)x
ir
n−1 + αnc

r
urn

if Y ir
n = 1

x irn−1 if Y ir
n = 0

x irn = x irn−1 + αn Y
ir
n [c rurn − x irn−1]︸ ︷︷ ︸

Ṽ ir
n

Minimal information: Players only observe their own payoff !
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Learning Stochastic Approximation

Stochastic Approximation: basic framework
(Robbins-Monro’51, Ljung’71,..., Benaim-Hirsch’96)

A Robbins-Monro process is a stochastic process of the form

(RM) xn+1−xn
αn+1

= F (xn) + un+1

with un a sequence of random variables adapted to a filtration {Fn}n∈N in
a probability space (Ω,F ,P): un is Fn-measurable with E(un+1|Fn) = 0.

Such a process can be interpreted as a stochastically perturbed
discretization of the differential equation

(DD) dx
dt = F (x)
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Learning Stochastic Approximation

Stochastic Approximation: attractors and convergence

Under the following conditions (with p ≥ 2)

xn bounded

un bounded in Lp∑
αn =∞ and

∑
α
1+p/2
n <∞

the ω-limit set of the sequence (xn)n∈N generated by (RM) is P-almost
surely a compact set which is invariant for (DD) with no proper attractor.

insert figure ICT

.
Theorem
..

.

. ..

.

.

Under the assumptions above
...1 If x∗ is a global attractor of (DD) then P(xn → x∗) = 1
...2 If x∗ is a local attractor of (DD) then P(xn → x∗) > 0
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Learning Stochastic Approximation

Stochastic Approximation: example statistical estimation
(Robbins-Monro’51)

Problem: Estimate the intensity x ≥ 0 for a radiation therapy which
allows to reduce a tumor by a fraction ρ (in expected value).

Treatment effectivity is a bounded random variable Y ∼ F(x) with
E(Y ) = M(x) an unknown increasing function of x . We assume that there
is a unique solution θ of the equation M(θ) = ρ.

We observe outcomes yn = Y (xn) at levels x0, x1, x2, . . . and update

xn+1 = xn + αn+1(ρ− yn).

with (αn)n∈N ∈ ℓ2 \ ℓ1. The corresponding ODE

dx
dt = ρ−M(x)

has θ as its unique global attractor so that xn → θ almost surely.
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Learning Stochastic Approximation

Stochastic Approximation: example law of large numbers

Let (Yk)k∈N be a sequence of i.i.d. bounded random variables with
expected value µ. Let xn = 1

n (Y1 + · · ·+ Yn).

Setting αn = 1
n we have

xn+1−xn
αn+1

= Yn+1 − xn

= µ− xn + un+1

The corresponding ODE is
dx
dt = µ− x

whose solution is exponential with x(t)→ µ, thus xn → µ almost surely.

R. Cominetti (UAI – Chile) Equilibrium Routing under Uncertainty 39 / 108



Learning Stochastic Approximation

Stochastic Approximation: example law of large numbers

Let (Yk)k∈N be a sequence of i.i.d. bounded random variables with
expected value µ. Let xn = 1

n (Y1 + · · ·+ Yn).

Setting αn = 1
n we have

xn+1−xn
αn+1

= Yn+1 − xn

= µ− xn + un+1

The corresponding ODE is
dx
dt = µ− x

whose solution is exponential with x(t)→ µ, thus xn → µ almost surely.

R. Cominetti (UAI – Chile) Equilibrium Routing under Uncertainty 39 / 108



Learning Stochastic Approximation

Stochastic Approximation: example law of large numbers

Let (Yk)k∈N be a sequence of i.i.d. bounded random variables with
expected value µ. Let xn = 1

n (Y1 + · · ·+ Yn).

Setting αn = 1
n we have

xn+1−xn
αn+1

= Yn+1 − xn

= µ− xn + un+1

The corresponding ODE is
dx
dt = µ− x

whose solution is exponential with x(t)→ µ, thus xn → µ almost surely.

R. Cominetti (UAI – Chile) Equilibrium Routing under Uncertainty 39 / 108



Learning Adaptive dynamics in routing games

Discrete stochastic adaptive learning process

Back to adaptive learning in the atomic congestion game

State variable: x ir = perception of driver i on route r

Random choice: Y ir =

{
1 if i takes route r
0 otherwise

πir = P(Y ir =1) =
exp(−βx ir )∑
ℓ exp(−βx iℓ)

Route loads: ur =
∑

i Y
ir

Dynamics:

x irn = x irn−1 + αn Y
ir
n [c rurn − x irn−1]︸ ︷︷ ︸

Ṽ ir
n
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Learning Adaptive dynamics in routing games

Continuous-time adaptive dynamics

(LP)
xn − xn−1

αn
= Ṽn Learning process

Mean field approximation: if
∑
αn =∞ and

∑
α2
n <∞

(AD)
dx

dt
= E(Ṽ |x) Adaptive dynamics
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Learning Adaptive dynamics in routing games

Analytic expression for the mean field

E(Ṽ ir |x) = πir [E(c rur |Y ir =1)︸ ︷︷ ︸−x ir ]
F ir (π)

︷ ︸︸ ︷
N−1∑
u=1

c r1+u

∑
|A|=u

∏
j∈A

πjr
∏
j ̸∈A

(1− πjr )Adaptive dynamics

dx

dt

ir

= πir (x)[C ir (x)− x ir ]

C ir (x) = F ir (Π(x))

Π(x) = (πir (x))
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Learning Adaptive dynamics in routing games

Analytic expression for the mean field
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Learning Adaptive dynamics in routing games

Simulation: 2 drivers × 2 routes

dx
dt

1a
= πa(x1)[C a(x2)− x1a] (driver 1)

dx
dt

1b
= πb(x1)[C b(x2)− x1b]

dx
dt

2a
= πa(x2)[C a(x1)− x2a] (driver 2)

dx
dt

2b
= πb(x2)[C b(x1)− x2b]

πa(x) = exp(−βxa)/[exp(−βxa) + exp(−βxb)]
πb(x) = exp(−βxb)/[exp(−βxa) + exp(−βxb)]

C a(x) = ca1π
b(x) + ca2π

a(x)

C b(x) = cb1π
a(x) + cb2π

b(x)
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Learning Adaptive dynamics in routing games

Simulation: 2 drivers × 2 routes

2 2.2 2.4 2.6 2.8 3

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

Belief arc A

Be
lie

f a
rc

 B

β = 1.0

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Belief arc A
Be

lie
f a

rc
 B

β = 2.5

R. Cominetti (UAI – Chile) Equilibrium Routing under Uncertainty 44 / 108



Learning Adaptive dynamics in routing games

Simulation: 5 drivers × 3 routes
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Learning Adaptive dynamics in routing games

Simulation: 50 drivers × 3 routes
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Learning Adaptive dynamics in routing games

Rest points — an underlying game

E = {rest points} = {x : x ir = C ir (x) for all i , r}

x = C (x) = T (Π(x))⇔
{

x = T (π)
π = Π(x)

Thus x � π bijects E with Π(E) = {rest probabilities}

.
Theorem (C-Melo-Sorin’10)
..

.

. ..

.

.

Π(E) = Nash equilibria of the N-person game with strategies πi ∈ ∆(R)
and costs

G i (π) = ⟨πi ,F i (π)⟩+ 1
β

∑
r

πir [lnπir − 1]
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Learning Adaptive dynamics in routing games

Rest points — existence/uniqueness/convergence

Denote δ = maxr ,u[c
r
u−c ru−1] the maximal congestion jump

.
Theorem (C-Melo-Sorin’10)
..

.

. ..

.

.

...1 There exist rest points

...2 Exactly one of them is symmetric: x̂ ir = x̂ jr

...3 βδ < 2 ⇒ x̂ is the unique rest point and a local attractor

...4 βδ < 2
N−1 ⇒ x̂ is a global attractor ⇒ P(xn → x̂) = 1
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u−c ru−1] the maximal congestion jump

.
Theorem (C-Melo-Sorin’10)
..

.

. ..

.

.

...1 There exist rest points

...2 Exactly one of them is symmetric: x̂ ir = x̂ jr

...3 βδ < 2 ⇒ x̂ is the unique rest point and a local attractor

...4 βδ < 2
N−1 ⇒ x̂ is a global attractor ⇒ P(xn → x̂) = 1
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Learning Adaptive dynamics in routing games

Potential function

.
Theorem (C-Melo-Sorin’10)
..

.

. ..

.

.

The map F admits a potential, namely F (π) = ∇H(π) where

H(π) =
∑
r

E(c r1 + c r2 + · · ·+ c rUr ).

Denote

Hβ(π) = H(π) + 1
β

∑
ir π

ir ln(πir )

L(π;λ) = Hβ(π)−
∑

i λ
i [
∑

r π
ir−1]
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Learning Adaptive dynamics in routing games

Equivalent Lagrangian dynamics

The adaptive dynamics can be written

dx

dt
= − 1

β∇xL(x ;λ(x))

where
L(x ;λ) = L(π(x , λ);λ)
πir (x , λ) = exp(−β(x ir − λi ))
λi (x) = − 1

β ln(
∑

r exp(−βx ir ))
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Learning Adaptive dynamics in routing games

Rest points as extremals

.
Theorem (C-Melo-Sorin’10)
..

.

. ..

.

.

For π = Π(x) the following are equivalent

(a) x ∈ E
(b) ∇xL(x , λ(x)) = 0

(c) π is a Nash equilibrium

(d) ∇πL(π, λ) = 0 for some λ ∈ RM

(e) π is a critical point of Hβ(·) on ∆(R)N

Moreover, if βδ < 1 then Hβ(·) is strongly convex and π̂ = Π(x̂) is its
unique minimizer on ∆(R)N .
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Learning Adaptive dynamics in routing games

Rest points — Bifurcation: 2 drivers × 2 routes

Symmetric equilibrium x̂ is stable ⇔ | A∆ | > h( 4
β∆)
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Learning Adaptive dynamics in routing games

Bifurcation: 2 drivers × 2 routes
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Learning Adaptive dynamics in routing games

State dependent update — Mario Bravo 2012

Players exploit memory of play for updating

x irn − x irn−1 =
1

θirn
Y ir
n [c rurn − x irn ]

with θirn the number of times route r has been used by i up to time n.

The empirical frequencies of play πirn = θirn /n satisfy the recursion

πirn − πirn−1 =
1
n

(
1{r in=r} − πirn−1

)
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Learning Adaptive dynamics in routing games

State dependent update — Mario Bravo 2012

MB’s process leads to the coupled adaptive dynamics

(CAD)

ẋ ir = πir (x)
πir [C ir (x)− x ir ]

π̇ir = πir (x)− πir

.
Theorem (Bravo’12)
..

.

. ..

.

.

...1 Same rest points: x∗ ∈ E , π∗ = π(x∗)

...2 βδ < 2 ⇒ convergence with positive probability

...3 βδ < 2
N−1 ⇒ almost sure convergence
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Learning Adaptive dynamics in routing games

Comparison of discrete dynamics speeds

∥(xn, πn)− (x∗, π∗)∥ vs ∥xn − x∗∥
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Learning Adaptive dynamics in routing games

Extensions and open problems

Extended to finite games and general discrete choice models

Applications to multipath TCP/IP protocol design

Open problems

Almost sure convergence beyond bifurcation threshold?
Speed of convergence and large deviations?
Understand general structure of rest point bifurcation?
More realistic adaptive learning dynamics?
Connections with classical equilibrium models?
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TCP/IP

Internet traffic control — TCP/IP
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TCP/IP Routing & Rates

TCP/IP – Single path routing

G = (N,A) communication network

Each source s ∈ S transmits packets from origin os to destination ds

Along which route? At which rate?
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TCP/IP Routing & Rates

TCP/IP – Current protocols

Route selection (RIP/OSPF/IGRP/BGP/EGP)
Dynamic adjustment of routing tables
Slow timescale evolution (15-30 seconds)
Network Layer 3

Rate control (TCP Reno/Tahoe/Vegas)
Dynamic adjustment of source rates – congestion window
Fast timescale evolution (100-300 milliseconds)
Transport Layer 4
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TCP/IP Routing & Rates

Congestion measures: link delays / packet loss

Switch/Router

Links have random delays λ̃a = λa + ϵa with E(ϵa) = 0

λ̃a = queuing + transmission + propagation

And packet loss probabilities pa because of finite queuing buffers
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TCP/IP Routing & Rates

TCP – Congestion window

Packets ←→ Acks

xs = source rate ∼ congestion window
round-trip time =

Ws

τs
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TCP/IP Congestion control

TCP – Congestion control

Sources adjust transmission rates in response to congestion

Basic principle: higher congestion ⇔ smaller rates

λa : link congestion measure (loss pbb, queuing delay)
xs : source transmission rate [packets/sec]

qs =
∑

a∈s λa (end-to-end congestion)

ya =
∑

s∋a xs (aggregate link loads)

Decentralized algorithms

x t+1
s = Fs(x

t
s , q

t
s ) (TCP – source dynamics)

λt+1
a = Ga(λ

t
a, y

t
a) (AQM – link dynamics)
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TCP/IP Congestion control

Example: TCP-Reno / packet loss probability

AIMD control

W t+τs
s =

{
W t

s + 1 if W t
s packets are successfully transmitted

⌈W t
s /2⌉ one or more packets are lost (duplicate ack’s)

πts =
∏

a∈s(1−pta) = success probability (per packet)

Additive congestion measure

qts , − ln(πts)

λta , − ln(1−pta)

}
⇒ qts =

∑
a∈s λ

t
a

Approximate model for rate dynamics

E(W t+τs
s |W t

s ) ∼ e−qtsW
t
s (W t

s + 1) + (1− e−qtsW
t
s )⌈W t

s /2⌉

⇒ x t+1
s = x ts +

1
2τs

[
e−τsqtsx

t
s (x ts +

2
τs
)− x ts

]
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TCP/IP Congestion control

Example: AQM / Droptail −→ RED-REM

Marking probability on links controlled by AQM

pta = φa(r
t
a)

as a function of average queue length

r t+1
a = (1−α)r ta + αLta

Loss probability vs. average queue length
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TCP/IP NUM

Network Utility Maximization

Kelly, Maullo and Tan (1998) proposed an optimization-based model
for distributed rate control in networks.

Low, Srikant, etc. (1999-2002) showed that current TCP/AQM
control algorithms solve an implicit network optimization problem.

During last decade, the model has been used and extended to study
the performance of wired and wireless networks.
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TCP/IP NUM

Steady state equations

x t+1
s = Fs(x

t
s , q

t
s ) (TCP – source dynamics)

λt+1
a = Ga(λ

t
a, y

t
a) (AQM – link dynamics)

xs = Fs(xs , qs) (TCP – source equilibrium)
λa = Ga(λa, ya) (AQM – link equilibrium)

⇕

xs = fs(qs) (decreasing)
λa = ψa(ya) (increasing)

qs =
∑

a∈s λa
ya =

∑
s∋a xs

⇔
xs = fs(

∑
a∈s λa)

λa = ψa(
∑

s∋a xs)
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TCP/IP NUM

Examples

TCP-Reno (loss probability)

qs = f −1
s (xs) , 1

τsxs
ln(1 + 2

τsxs
)

λa = ψa(ya) , δya
ca−ya

TCP-Vegas (queueing delay)

qs = f −1
s (xs) , ατs

xs

λa = ψa(ya) , ya
ca−ya
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TCP/IP NUM

Steady state – Primal optimality

xs = fs(
∑

a∈s λa)

λa = ψa(
∑

s∋a xs)

f −1
s (xs) =

∑
a∈s λa =

∑
a∈s ψa(

∑
u∋a xu)

≡ optimal solution of strictly convex program

(P) min
x

∑
s∈S Us(xs) +

∑
a∈AΨa(

∑
s∋a xs)

U ′
s(·) = −f −1

s (·)
Ψ′

a(·) = ψa(·)
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TCP/IP NUM
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TCP/IP NUM

Steady state – Dual optimality

xs = fs(
∑

a∈s λa)

λa = ψa(
∑

s∋a xs)

ψ−1
a (λa) =

∑
s∋a xs =

∑
s∋a fs(

∑
b∈s λb)

≡ optimal solution of strictly convex program

(D) min
λ

∑
a∈AΨ∗

a(λa) +
∑

s∈S U
∗
s (
∑

a∈s λa)
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TCP/IP NUM
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TCP/IP NUM

Theorem (Low’2003)

xs = fs(
∑

a∈s λa)
λa = ψa(

∑
s∋a xs)

⇔ x and λ are optimal solutions
for (P) and (D) respectively

Relevance:

Reverse engineering of existing protocols / forward engineering (fs , ψa)

Design distributed stable protocols to optimize prescribed utilities

Flexible choice of congestion measure qs

Limitations:

Ignores delays in transmission of congestion signals

Improper account of stochastic phenomena

Single-path routing
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TCP/IP Markovian NUM

Markovian Network Utility Maximization (MNUM)

Increase transmission rates: single path −→ multi-path

Goal: design distributed TCP protocols with multi-path routing

Packet-level protocol that is stable and satisfies optimality criteria

Model based on the notion of Markovian traffic equilibrium

R. Cominetti (UAI – Chile) Equilibrium Routing under Uncertainty 72 / 108



TCP/IP Markovian NUM

MNUM: integrated routing & rate control

Cross-layer design: routing + rate control

Based on a common congestion measure: delay

Link random delays λ̃a = λa + ϵa with E(ϵa) = 0

λ̃a = queuing + transmission + propagation
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TCP/IP Markovian NUM

MNUM: Markovian multipath routing

At switch i , packets headed to destination d are routed through the
outgoing link a ∈ A+

i that minimizes the “observed” cost-to-go

τ̃di = mina∈A+
i
λ̃a + τdja︸ ︷︷ ︸

z̃da

Markov chain with transition matrix

Pd
ij =

{
P(z̃da ≤ z̃db , ∀b ∈ A+

i ) if i = ia, j = ja
0 otherwise
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TCP/IP Markovian NUM

Expected flows (invariant measures)

The flow ϕdi entering node i and directed towards d

ϕdi =
∑

os=i
ds=d

xs +
∑

a∈A−
i
vda

splits among the outgoing links a = (i , j) according to

vda = ϕdi P
d
ij
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TCP/IP Markovian NUM

Expected costs

Letting zda = E(z̃da ) and τdi = E(τ̃di ), we have

zda = λa + τdja
τdi = φd

i (z
d)

with
φd
i (z

d) , E(mina∈A+
i
[zda + ϵda ])

Moreover

P
(
z̃da ≤ z̃db , ∀b ∈ A+

i

)
=
∂φd

i

∂zda
(zd)
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TCP/IP Markovian NUM

Markovian NUM – Definition

xs = fs(qs) (source rate control)

λa = ψa(ya) (link congestion)

ya =
∑

d v
d
a (total link flows)

qs = τs − τ0s (end-to-end queuing delay)

where τs = τdsos with expected costs given by

(ZQ)

{
zda = λa + τdja
τdi = φd

i (z
d)

and expected flows vd satisfying

(FC )

 ϕdi =
∑

os=i
ds=d

xs +
∑

a∈A−
i
vda ∀i ̸= d

vda = ϕdi
∂φd

i

∂zda
(zd) ∀a ∈ A+

i

R. Cominetti (UAI – Chile) Equilibrium Routing under Uncertainty 77 / 108



TCP/IP Markovian NUM

MNUM Characterization: Dual problem

(ZQ) defines implicitly zda and τdi as concave functions of λ

xs = fs(qs) with qs = τdsos (λ)− τ
ds
os (λ

0) yields xs as a function of λ

(FC ) then defines vda as functions of λ

MNUM conditions ⇔ ψ−1
a (λa) = ya =

∑
d v

d
a (λ)

.
Theorem
..

.

. ..

.

.

MNUM ⇔ optimal solution of the strictly convex program

(D) min
λ

∑
a∈A

Ψ∗
a(λa) +

∑
s∈S

U∗
s (qs(λ))
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TCP/IP Markovian NUM

MNUM Characterization: Primal problem

.
Theorem
..

.

. ..

.

.

MNUM ⇔ optimal solution of

min
(x ,y ,v)∈P

∑
s∈S

Us(xs) +
∑
a∈A

Ψa(ya) +
∑
d∈D

χd(vd)

where
χd(vd) = sup

zd

∑
a∈A

(φd
ia(z

d)− zda )v
d
a

and P is the polyhedron defined by flow conservation constraints.
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Risk-averse routing

Risk averse routing
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Risk-averse routing

What is the risk of a path?
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Risk-averse routing

Copenhagen – DTU Transport (www.transport.dtu.dk)
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Risk-averse routing

Adelaide, South Australia (Susilawati et al. 2011)
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Risk-averse routing

Previous: Normal, Log-normal, Gamma, Weibull
Best fit: Burr distribution F (x) = 1− (1 + xc)−k
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Risk-averse routing

Some recent literature on risk averse routing

[1] Loui – Optimal paths in graphs with stochastic or multidimensional weights.
Commun. ACM 26(9), 1983.

[2] Bates et al. – The evaluation of reliability for personal travel.
Transportation Research E 37, 2001.

[3] Noland, Polak – Travel time variability: a review of theoretical and empirical
issues. Transport Reviews 22, 2002.

[4] Hollander – Direct versus indirect models for the effects of unreliability.
Transportation Research A 40, 2006.

[5] Nie, Wu – Shortest path problem considering on-time arrival probability.
Transportation Research A 40, 2006.

[6] Ordóñez & Stier-Moses – Wardrop equilibria with risk-averse users.
Transportation Science 44(1), 2010.

[7] Engelson & Fosgerau – Additive measures of travel time variability.
Transportation Research B 45, 2011.
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Risk-averse routing

Some recent literature on risk averse routing

[8] Nie – Multiclass percentile user equilibrium with flow dependent
stochasticity. Transportation Research B 45(10), 2011.

[9] Wu, Nie – Modeling heterogeneous risk-taking behavior in route choice.
Transportation Research A 45(9), 2011.

[10] Nie, Wu, Homem-de-Mello – Optimal path problems with second-order
stochastic dominance constraints. Networks & Spatial Economics 12(4),
2012.

[11] Nikolova & Stier-Moses – A mean-risk model for the traffic assignment
problem with stochastic travel times. Operations Research 62(2), 2014.

[12] Jaillet, Qi & Sim – Routing optimization with deadlines under uncertainty.
To appear in Operations Research.

[13] Cominetti, Torrico – Additive consistency of risk measures and its
application to risk-averse routing in networks. To apear in Mathematics of
Operations Research.
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Risk-averse routing

In this session. . .

...1 How do we measure the risk of a path?

...2 Some risk measures — paradoxes and drawbacks

...3 Additive consistency — entropic risk measures

...4 Remarks — optimal paths and network equilibrium

...5 Remarks — dynamic risk measures
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Risk-averse routing

Setting

Bounded random variables: X ∈ L∞(Ω,F ,P)

Preferences: X ≼ Y ⇔ Φ(X ) ≤ Φ(Y )

Scalar measure of risk: Φ(X ) ∈ R
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Risk-averse routing Some popular risk measures

Some popular risk measures

ϕ(X ) = µX + γσX (Markowitz)

ϕ(X ) = VaRp(X ) = (1−p)-percentile (Value-at-Risk)

ϕ(X ) = AVaRp(X ) = E[X |X ≥ VaRp(X )] (Average VaR)

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1−p
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Risk-averse routing Some popular risk measures

Two natural axioms

Monotonicity

if X ≤ Y almost surely then ϕ(X ) ≤ ϕ(Y )

Additive consistency

if ϕ(X ) ≤ ϕ(Y ) then ϕ(Z+X ) ≤ ϕ(Z+Y ) for all Z ⊥ (X ,Y ).

X

Y

Z

Additive consistency fails for Markowitz, VaR, CVaR.
Markowitz not even monotone.
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Risk-averse routing Some popular risk measures

How to measure risk: mean-stdev (Markowitz 1952)

t̃a t̃b t̃c

X =
∑

a∈r t̃a

Φγ(X ) = µ+ γσ =
∑

a∈r µa + γ
√∑

a∈r σ
2
a

Optimal path: O(nlog n) subexponential algorithm (Nikolova’2010)

Drawbacks:

Lack of monotonicity

Lack of additive consistency

Bellman’s principle fails: finding optimal paths is hard
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Risk-averse routing Some popular risk measures

Lack of monotonicity

... ..

.X ∼ U(0, 1)

.Y = 1
2(1 + X )

Hence Y > X a.s. but for γ = 12 we have

Φγ(Y ) = 5
4 < Φγ(X ) = 3

2
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Risk-averse routing Some popular risk measures

Lack of additive consistency

... .. ..

.X

.Y

.Z

If Φ(X ) ≤ Φ(Y ) and Z independent... then Φ(X+Z ) ≤ Φ(Y+Z ) ?

Not necessarily! Consider γ = 1 and

X ∼ N(10.9, 1) ; Y ∼ N(10, 4) ; Z ∼ N(10, 1)

Φ(X ) = 11.9 < Φ(Y ) = 12.0

Φ(X + Z ) = 22.3 > Φ(Y + Z ) = 22.2
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Risk-averse routing Some popular risk measures

How to measure risk: Value-at-Risk (. . .late 1980’s)

Φ(X ) = VaRα(X ) = F−1
X (1− α) = (1− α)-percentile

0 1 2 3 4 5 6 7 8 9 10
0
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0.15

0.2

0.25

0.3

0.35

1−α

It is monotone. Coincides with mean-stdev for Normal distributions ⇒
Not additive consistent

Bellman’s principle fails: finding optimal paths is hard
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Risk-averse routing Some popular risk measures

How to measure risk: Average Value-at-Risk
(Artzner et al. 1999; Rockafellar and Uryasev 2000)

Φ(X ) = AVaRα(X ) =
1

α

∫ α

0
VaRt(X )dt = E[X |X ≥ VaRα(X )]

0 1 2 3 4 5 6 7 8 9 10
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It is monotone. Coincides with mean-stdev for Normal distributions ⇒
Not additive consistent

Bellman’s principle fails: finding optimal paths is hard
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Risk-averse routing Coherent risk measures

How to measure risk: Coherent risk measures
(Artzner et al. 1999)

A map Φ : L∞(Ω,F ,P)→ R is a risk measure if Φ(0) = 0 and it is

Monotone: X ≤ Y a.s. ⇒ Φ(X ) ≤ Φ(Y )

Translation invariant: m ∈ R⇒ Φ(X +m) = Φ(X ) +m

coherent: if Φ is sublinear

convex: if Φ is convex

risk averse: if Φ(EX ) ≤ Φ(X )

additive: if Φ(X+Y ) = Φ(X )+Φ(Y ) whenever X ⊥ Y

Remark:

• Trans. inv. ⇔ Φ(m)=m and Φ(X )≤Φ(Y )⇒ Φ(X+m)≤Φ(Y+m)

• Under translation invariance “additive ⇔ additive consistent”
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Risk-averse routing Expected utility

How to measure risk: Expected utility
(Bernoulli 1738; Kolmogorov 1930; Nagumo 1931; de Finetti 1931;

von Neuman-Morgenstern 1947)

For c : R→ R increasing the expected utility map

Φc(X ) = c−1(E c(X ))

is monotone, weakly continuous and satisfies the independence axiom

(IA) Φ(X ) ≤ Φ(Y )⇒ Φ(L(p,X ,Z )) ≤ Φ(L(p,Y ,Z )).

X

Y

Z

p

1�p

Remarks:

• These properties characterize expected utility preferences

• Risk-aversion ≡ exaggerate effect of bad events — c(·) convex
• But Φc is not translation invariant, hence not a risk measure !
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Risk-averse routing Expected utility

Entropic Risk Measures

.
Theorem
..

.

. ..

.

.

The only expected utility maps Φc that are translation invariant — and
hence risk measures — are the β-entropic risk measures

Φβ(X ) = 1
β ln(E eβX ).

associated with c(x) = eβx where −∞ < β <∞.

Remarks:

• Under more restrictive conditions similar results by Gerber’1974,
Luan’2001, Heilpern’2003

• Φβ is also additive and hence additive consistent

• For β ≥ 0 it is convex and risk averse

• Coherent only for Φ0(X ) = E(X )
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Risk-averse routing Expected utility

Sketch of Proof

From Φc(m+zBp) = m+Φc(zBp) with Bp Bernoulli we get
differentiability of c(·) and the functional equation

c ′(0)[c(m+z)−c(m)] = c ′(m)[c(z)− c(0)]

whose solutions are c(x) = eβx (up to an affine transformation). �
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Risk-averse routing Dual theory of choice

How to measure risk: Dual theory of choice
(Allais 1953; Yaari 1987)

Let h : [0, 1]→ [0, 1] increasing, h(0) = 0, h(1) = 1. The h-distorted risk
measure is defined by

Φh(X ) = E(X h)

where X h is a random variable with distribution

P(X h ≤ x) = h(P(X ≤ x)).

Risk-aversion ≡ exaggerate the probability of bad events — h(s) ≤ s

These measures are characterized by the dual independence axiom:

(DIA) Φ(X ) ≤ Φ(Y )⇒ Φ(αX + (1−α)Z ) ≤ Φ(αY + (1−α)Z )

for all X ,Y ,Z pairwise co-monotonic.
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Risk-averse routing Rank dependent utility

How to measure risk: Combine utility & distortion
(Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function c : R→ R and a distortion map h : [0, 1]→ [0, 1]
Φh
c(X ) = c−1(E c(X h)).

Wakker: Rank dependent utilities
Characterized by weaker independence axiom: tradeoff consistency.

Translation invariance holds for all h but imposes c(x) = eβx .
If we also ask for additive consistency then h(s) = s.
.
Theorem
..

.

. ..

.

.

The only maps Φh
c that are additive consistent are the entropic risk

measures Φβ

Remark: Under smoothness assumptions this result was obtained by Luan’2001,

Heilpern’2003, Goovaerts-Kaas-Laeven-Tang’2010
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Risk-averse routing Rank dependent utility

How to measure risk: Combine utility & distortion
(Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function c : R→ R and a distortion map h : [0, 1]→ [0, 1]
Φh
c(X ) = c−1(E c(X h)).

Wakker: Rank dependent utilities
Characterized by weaker independence axiom: tradeoff consistency.

Translation invariance holds for all h but imposes c(x) = eβx .
If we also ask for additive consistency then h(s) = s.
.
Theorem
..

.

. ..

.

.
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Risk-averse routing Rank dependent utility

Sketch of Proof

Step 1: From Φh
c(m + zBp) = m +Φh

c(zBp) we get

c ′(0)[c(m+z)−c(m)] = c ′(m)[c(z)− c(0)]

as before so that c(x) = eβx .

Step 2: From Φh
c(zBp + zBq) = Φh

c(zBp) + Φh
c(zBq) we get

h(pq) = h(p)h(q)

h(p) + h(q) = h(p)h(q) + h(1− p̄q̄)

with unique solution h(s) = s. �
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Risk-averse routing Entropic shortest paths

Computing entropic optimal paths

Let G = (V ,A) with all the t̃a’s independent. By additive consistency, the
risk of the random time X =

∑
a∈r t̃a of a path r satisfies

Φβ(X ) =
∑
a∈r

Φβ(t̃a).

⇒ optimal paths ≡ shortest paths with lengths ℓa = Φβ(t̃a).

Comment: Dependent case yields a stochastic dynamic programming
recursion solved by conditional expectation

Φβ(X + Y ) = Φβ(X +Φβ(Y |X )).
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Risk-averse routing Entropic equilibrium

Routing games with entropic risk averse players

If the distribution t̃a ∼ F (va) depends on the load va of link a so that
Φβ(t̃a) = ga(va) is an increasing function of va, then

non-atomic equilibrium falls into Wardrop’s framework

the atomic case is a special case of Rosenthal’s framework
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Risk-averse routing Dynamic risk measures

Dynamic risk measures & consistency

Consider a sequence of payoffs Xt ∈ Zt = L∞(Ω,Ft ,P) adapted to a
filtration F0 ⊆ F1 ⊆ · · · ⊆ FT ⊆ F .

A sequence of conditional risk measures ρt : Zt → Zt−1 which are

monotone: X ≤ Y ⇒ ρt(X ) ≤ ρt(Y )

predictable invariant: ρt(X + Y ) = ρt(X ) + Y for Y ∈ Zt−1

is called dynamically consistent if the nested risk transition maps

RT
t (Xt , . . . ,XT ) = ρt(Xt + ρt+1(Xt+1 + · · ·+ ρT (XT )))

are such that
RT
t (Xt , . . . ,XT ) ≤ RT

t (Yt , . . . ,YT )

⇓

RT
t−1(Z ,Xt , . . . ,XT ) ≤ RT

t−1(Z ,Yt , . . . ,YT )
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Risk-averse routing Dynamic risk measures

Routing stages & recursive AVaR ?

...

..

..

.X ∼N(5, 1) .Y ∼N(5, 1)

.Z∼N(10, 1.5)

ρ1(X + ρ2(Y )) > ρ1(Z )
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Risk-averse routing Dynamic risk measures

Routing stages & recursive AVaR ?

... ..

.X + Y ∼N(10,
√
2)

.Z∼N(10, 1.5)

ρ1(X+Y ) < ρ1(Z )
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Risk-averse routing Dynamic risk measures

This is the end... !
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