Equilibrium Routing under Uncertainty

Roberto Cominetti

Universidad Adolfo Ibáñez Facultad de Ingeniería y Ciencias

Stochastic Mathematical Optimization and Variational Analysis

IMPA — Rio de Janeiro May 16-19, 2016

Models to describe traffic flows under congestion

Models to describe traffic flows under congestion

SANTIAGO

6.000.000 people 11.000.000 daily trips 1.750.000 car trips

Morning peak 500.000 car trips 29.000 OD pairs

Models to describe traffic flows under congestion

SANTIAGO

6.000.000 people 11.000.000 daily trips 1.750.000 car trips

Morning peak 500.000 car trips 29.000 OD pairs

2266 nodes / 7636 arcs / 409 centroids

Models to describe traffic flows under congestion

SANTIAGO

6.000.000 people 11.000.000 daily trips 1.750.000 car trips

Morning peak 500.000 car trips 29.000 OD pairs

2266 nodes / 7636 arcs / 409 centroids

Question: control traffic flows and congestion

INTERNET

294.000.000.000 mails/day 2.000.000.000 videos/day 8.500.000.000 webpages 2.100.000.000 users

Question: control traffic flows and congestion

INTERNET Backbone

193.000.000 domains 75.000.000 servers 35.000 AS's

Equilibrium: Wardrop's basic idea... 1952

Equilibrium: Wardrop's basic idea... 1952

Equilibrium: Wardrop's basic idea... 1952

Outline

- Equilibrium models
- Adaptive learning
- TCP/IP protocols
- Risk-averse routing

Deterministic & stochastic equilibrium models

Wardrop Equilibrium (Wardrop'52)

 $\text{Given} \left\{ \begin{array}{ll} \text{network} & (N, A) \\ \text{arc travel times} & t_a = s_a(w_a) \\ \text{travel demands} & g_i^d \ge 0 \\ \text{routes} & \mathcal{R}_i^d \end{array} \right.$

Wardrop Equilibrium (Wardrop'52)

Split $g_i^d = \sum_{r \in \mathcal{R}_i^d} x_r$ with $x_r \ge 0$ so that only shortest routes are used

$$x_r > 0 \Rightarrow T_r = \tau_i^d$$

Wardrop Equilibrium (Wardrop'52)

$$\text{Given} \left\{ \begin{array}{ll} \text{network} & (N,A) \\ \text{arc travel times} & t_a = s_a(w_a) \\ \text{travel demands} & g_i^d \geq 0 \\ \text{routes} & \mathcal{R}_i^d \end{array} \right.$$

Split $g_i^d = \sum_{r \in \mathcal{R}_i^d} x_r$ with $x_r \ge 0$ so that only shortest routes are used

$$x_r > 0 \Rightarrow T_r = \tau_i^d$$

where

 $\begin{aligned} \tau_i^d &= \min_{r \in \mathcal{R}_i^d} T_r \quad \text{(minimal time)} \\ T_r &= \sum_{a \in r} s_a(w_a) \quad \text{(route times)} \\ w_a &= \sum_{r \ni a} x_r \quad \text{(total arc flows)} \end{aligned}$

Wardrop

Variational characterization (Beckman-McGuire-Winsten'56)

Theorem

 $(w_a^*)_{a \in A}$ Wardrop equilibrium \Leftrightarrow optimal solution of

$$(P) \quad \begin{cases} \operatorname{Min} \sum_{a} \int_{0}^{w_{a}} s_{a}(z) \, dz \\ s.t. \text{ flow conservation} \end{cases}$$

Proof

 $r \in \mathcal{R}_i^d, x_r > 0 \Rightarrow T_r = \min_{p \in \mathcal{R}_i^d} T_p$ is equivalent to $\sum \sum T(\tilde{x} - x_i) \ge 0 \quad \text{for all foasible}$

$$\sum_{(i,d)} \sum_{r \in \mathcal{R}_i^d} I_r(x_r - x_r) \ge 0 \quad \text{for all feasible } x$$

Proof

 $r\in \mathcal{R}^d_i, x_r>0 \Rightarrow \mathcal{T}_r= \min_{p\in \mathcal{R}^d_i} \mathcal{T}_p$ is equivalent to

$$\sum_{(i,d)} \sum_{r \in \mathcal{R}_i^d} \sum_{a \in r} s_a(w_a)(\tilde{x}_r - x_r) \ge 0 \qquad \text{for all feasible } \tilde{x}$$

Wardrop

Proof

$$r \in \mathcal{R}_i^d, x_r > 0 \Rightarrow T_r = \min_{p \in \mathcal{R}_i^d} T_p$$
 is equivalent to

$$\sum_{(i,d)} \sum_{r \in \mathcal{R}_i^d} \sum_{a \in r} s_a(w_a)(\tilde{x}_r - x_r) \ge 0 \qquad \text{for all feasible } \tilde{x}$$

Exchanging the order of summation this becomes

$$\sum_{a \in A} \sum_{(i,d)} \sum_{r \in \mathcal{R}^d_i, r \ni a} s_a(w_a)(\tilde{x}_r - x_r) \ge 0 \qquad \text{for all feasible } \tilde{x}$$

Proof

$$r \in \mathcal{R}_i^d, x_r > 0 \Rightarrow T_r = \min_{p \in \mathcal{R}_i^d} T_p$$
 is equivalent to $\sum_{(i,d)} \sum_{r \in \mathcal{R}_i^d} \sum_{a \in r} s_a(w_a)(\tilde{x}_r - x_r) \ge 0$ for all feasible \tilde{x}

Exchanging the order of summation this becomes

$$\sum_{a \in A} s_a(w_a)(\tilde{w}_a - w_a) \ge 0 \qquad \text{for all feasible } \tilde{x}$$

Proof

$$r \in \mathcal{R}_i^d, x_r > 0 \Rightarrow T_r = \min_{p \in \mathcal{R}_i^d} T_p$$
 is equivalent to
$$\sum_{(i,d)} \sum_{r \in \mathcal{R}_i^d} \sum_{a \in r} s_a(w_a) (\tilde{x}_r - x_r) \ge 0 \qquad \text{for all feasible } \tilde{x}$$

Exchanging the order of summation this becomes

$$\sum_{a \in A} s_a(w_a)(\tilde{w}_a - w_a) \ge 0 \qquad \text{for all feasible } \tilde{x}$$

which are precisely the optimality conditions for the convex program

$$\min_{w \text{ feasible}} \sum_{a \in A} \int_0^{w_a} s_a(z) dz$$

Variational characterization (Beckman-McGuire-Winsten'56)

Theorem

 $(w_a^*)_{a \in A}$ Wardrop equilibrium \Leftrightarrow optimal solution of

$$(P) \quad \begin{cases} \operatorname{Min} \sum_{a} \int_{0}^{w_{a}} s_{a}(z) \, dz \\ s.t. \text{ flow conservation} \end{cases}$$

Wardrop

Variational characterization (Beckman-McGuire-Winsten'56)

Theorem

 $(w_a^*)_{a \in A}$ Wardrop equilibrium \Leftrightarrow optimal solution of

$$(P) \quad \left\{ \begin{array}{l} \operatorname{Min} \sum_{a} \int_{0}^{w_{a}} s_{a}(z) \, dz \\ s.t. \text{ flow conservation} \end{array} \right.$$

Corollary

- There exists a Wardrop equilibrium w*
- **2** Equilibrium travel times $t_a^* = s_a(w_a^*)$ are unique
- If $s_a(\cdot)$ strictly increasing $\Rightarrow w^*$ unique

Wardrop

Dual characterization (Fukushima'84)

Change of variables: $w_a \leftrightarrow t_a$

(D)
$$\underset{t}{\operatorname{Min}} \underbrace{\sum_{a} \int_{0}^{t_{a}} s_{a}^{-1}(z) \, dz - \sum_{i,d} g_{i}^{d} \tau_{i}^{d}(t)}_{\phi(t)}}_{\phi(t)}$$

Dual characterization (Fukushima'84)

Change of variables: $w_a \leftrightarrow t_a$

(D)
$$\min_{t} \sum_{a} \int_{0}^{t_{a}} s_{a}^{-1}(z) dz - \sum_{i,d} g_{i}^{d} \tau_{i}^{d}(t)$$
$$\underbrace{\phi(t)}_{\text{strictly convex}}$$

 $t\mapsto au_i^d(t) =$ minimum travel time concave, non-smooth, polyhedral

Dual characterization (Fukushima'84)

Change of variables: $w_a \leftrightarrow t_a$

(D)
$$\underset{t}{\operatorname{Min}} \underbrace{\sum_{a} \int_{0}^{t_{a}} s_{a}^{-1}(z) \, dz - \sum_{i,d} g_{i}^{d} \tau_{i}^{d}(t)}_{\phi(t)}}_{\phi(t)}$$

$$t\mapsto au_i^d(t) = {
m minimum travel time \ concave, non-smooth, polyhedral}$$

 $\tau_i^d = \min_{a \in A_i^+} [t_a + \tau_{j_a}^d]$

Bellman's equations

Method of Successive Averages

Algorithm 1 MSA - main iteration

- 1: Compute $t_a^n = s_a(w_a^n)$
- 2: Assign g_i^d to shortest routes
- 3: Compute arc flows $\tilde{w}_a^n = \Phi_a(w^n)$

4: Update
$$w^{n+1} = (1 - lpha_n) w^n + lpha_n ilde{w}^n$$

Wardrop equilibrium \equiv Fixed point of Φ

What if travel times are uncertain?

Copenhagen – DTU Transport (www.transport.dtu.dk)

Equilibrium Routing under Uncertainty

Stochastic User Equilibrium (Dial'71, Fisk'80)

Drivers have different perceptions of route costs

$$\left. egin{split} ilde{\mathcal{T}}_r &= \mathcal{T}_r + \epsilon_r \ ilde{\tau}_i^d &= \min_{r \in \mathcal{R}_i^d} ilde{\mathcal{T}}_r \end{split}
ight\}$$
 random variables

Stochastic User Equilibrium (Dial'71, Fisk'80)

Drivers have different perceptions of route costs

$$\left. egin{split} ilde{\mathcal{T}}_r &= \mathcal{T}_r + \epsilon_r \ ilde{\tau}_i^d &= \min_{r \in \mathcal{R}_i^d} ilde{\mathcal{T}}_r \end{split}
ight\} ext{ random variables}$$

Demand splits according to the pbb of each route being optimal

$$x_r = g_i^d \, \mathbb{P}(\tilde{T}_r = \tilde{\tau}_i^d)$$

with $t_a = s_a(w_a)$ and $w_a = \sum_{r \ni a} x_r$ as before

LOGIT MODEL (Dial'71, Fisk'80)

 ϵ_r i.i.d. Gumbel noise (supported by Gnedenko's theorem)

$$x_r = g_i^d \frac{\exp(-\beta T_r)}{\sum_{s \in \mathcal{R}_i^d} \exp(-\beta T_s)}$$

Drawbacks: independence is unlikely & tractable only for small networks

PROBIT MODEL (Daganzo'82)

 ϵ_r correlated Normal noise No closed form equations \Rightarrow Montecarlo

Drawback: tractable only for very small networks

Discrete choice models

Finite set of alternatives $i \in I$ with random costs $\tilde{z}_i = z_i + \varepsilon_i$.

Choose alternative of minimum cost. The expected cost is

$$\varphi(z) = \mathbb{E}[\min_{i \in I} (z_i + \varepsilon_i)]$$

Discrete choice models

Finite set of alternatives $i \in I$ with random costs $\tilde{z}_i = z_i + \varepsilon_i$.

Choose alternative of minimum cost. The *expected cost* is

$$\varphi(z) = \mathbb{E}[\min_{i \in I}(z_i + \varepsilon_i)]$$

Proposition

1 φ is a concave finite function 2 If $(\varepsilon_i)_{i \in I}$ has continuous distribution then φ is smooth with

$$\mathbb{P}(z_i\!+\!arepsilon_i ext{ optimal}) = rac{\partial arphi}{\partial z_i}$$

EXAMPLE: Multinomial Logit, $\varepsilon_k \sim \text{i.i.d.}$ Gumbel

$$\varphi(z) = -\frac{1}{\beta} \ln[\sum_{j} \exp(-\beta z_{j})]$$
$$\frac{\partial \varphi}{\partial z_{k}} = \frac{\exp(-\beta z_{k})}{\sum_{j} \exp(-\beta z_{j})}$$

Dual characterization of SUE

(D)

Dual characterization of SUE

Markovian Traffic Equilibrium (Akamatsu'00, Baillon-C'06)

Routing as a stochastic dynamic programming process

$$\left. \begin{array}{l} \tilde{t}_{a} = t_{a} + \epsilon_{a} \\ \tilde{T}_{r} = \sum_{a \in r} \tilde{t}_{a} \\ \tilde{\tau}_{i}^{d} = \min_{r \in \mathcal{R}_{i}^{d}} \tilde{T}_{r} \end{array} \right\} \quad \text{random} \\ \text{variables}$$

At every intermediate node *i*, users select a random optimal arc

 \Rightarrow Markov chain for each destination d

MTE equations

Expected in-flow

$$x_i^d = g_i^d + \sum_{a \in A_i^-} v_a^d$$

leaves node *i* according to

$$v_a^d = x_i^d \mathbb{P}(\tilde{t}_a + ilde{ au}_{j_a}^d \leq ilde{t}_b + ilde{ au}_{j_b}^d \ orall \ b \in A_i^+)$$

$$A_i^- egin{pmatrix} rac{v_a^d}{v_a^d}&v_a^d\\ rac{v_a^d}{v_a^d}&v_a^d \end{pmatrix} A_i^+$$

with $t_a = s_a(w_a)$ and $w_a = \sum_d v_a^d$

Variational formulation

$$ilde{ au}_i^d = \min_{a \in A_i^+} \{ ilde{t}_a + ilde{ au}_{j_a}^d \}$$

Theorem (Baillon-C'06)

 $\tau_i^d = \mathbb{E}(\tilde{\tau}_i^d)$ is the unique solution of the stochastic Bellman equations $\begin{cases} \tau_d^d = 0 \\ \tau_i^d = \mathbb{E}(\min_{a \in A_i^+} \{ t_a + \tau_{j_a}^d + \varepsilon_a^d \}) \end{cases}$

Moreover $t \mapsto \tau_i^d(t)$ is concave & smooth.

Variational formulation

Theorem (Baillon-C'06)

MTE is characterized by

(D)
$$\min_{t} \phi(t) \triangleq \sum_{a} \int_{0}^{t_{a}} s_{a}^{-1}(x) dx - \sum_{i,d} g_{i}^{d} \tau_{i}^{d}(t)$$

...same form as Wardrop equilibrium!

Algorithm 2 MSA - main iteration

- 1: Compute current arc travel times $\overline{t_a^n} = s_a(w_a^n)$
- 2: Solve stochastic Bellman's equations
- 3: Compute invariant measures of Markov chains \tilde{v}^d_a
- 4: Aggregate flows $\tilde{w}_a^n = \sum \tilde{v}_a^d$

5: Update
$$w^{n+1} = (1 - \alpha_n)w^n + \alpha_n \tilde{w}^n$$

Algorithm 2 MSA - main iteration

- 1: Compute current arc travel times $t_a^n = s_a(w_a^n)$
- 2: Solve stochastic Bellman's equations
- 3: Compute invariant measures of Markov chains \tilde{v}_a^d
- 4: Aggregate flows $\tilde{w}_a^n = \sum \tilde{v}_a^d$

5: Update
$$w^{n+1} = (1 - \alpha_n)w^n + \alpha_n \tilde{w}^n$$

$$\frac{w^{n+1}-w^n}{\alpha_n}=-\nabla\phi(t^n)$$

Algorithm 2 MSA - main iteration

- 1: Compute current arc travel times $t_a^n = s_a(w_a^n)$
- 2: Solve stochastic Bellman's equations
- 3: Compute invariant measures of Markov chains \tilde{v}_a^d
- 4: Aggregate flows $\tilde{w}_a^n = \sum \tilde{v}_a^d$

5: Update
$$w^{n+1} = (1-\alpha_n)w^n + \alpha_n \tilde{w}^n$$

$$\frac{w^{n+1}-w^n}{\alpha_n}=-\nabla\phi(t^n)=-D(w^n)^{-1}\nabla\tilde{\phi}(w^n)$$

Algorithm 2 MSA - main iteration

- 1: Compute current arc travel times $t_a^n = s_a(w_a^n)$
- 2: Solve stochastic Bellman's equations
- 3: Compute invariant measures of Markov chains \tilde{v}_a^d
- 4: Aggregate flows $\tilde{w}_a^n = \sum \tilde{v}_a^d$

5: Update
$$w^{n+1} = (1-\alpha_n)w^n + \alpha_n \tilde{w}^n$$

$$rac{w^{n+1}-w^n}{lpha_n}=-
abla\phi(t^n)=-D(w^n)^{-1}
abla ilde{\phi}(w^n)$$

Theorem (Baillon-C'06)

$$\sum \alpha_n = \infty$$
 and $\sum \alpha_n^2 < \infty \Rightarrow$ convergence to MTE

Stochastic MSA iterations

Equilibrium Routing under Uncertainty

Stochastic MSA-Newton iterations

Equilibrium Routing under Uncertainty

Nash

Atomic equilibrium in congestion games

- A finite set of players $i \in I$ traveling from o_i to d_i
- Each player *i* selects a path $r_i \in \mathcal{R}_i$
- These choices induce arc loads $u_a = \#\{i : a \in r_i\}$
- Player *i* experiences a travel time $c_i(r_i, r_{-i}) = \sum_{a \in r_i} s_a(u_a)$

Definition

A pure Nash equilibrium is a strategy profile $(r_i)_{i \in I}$ so that for each i

$$c_i(r_i, r_{-i}) \leq c_i(r'_i, r_{-i}) \quad \forall r'_i \in \mathcal{R}_i$$

Example: 50%-50% split between 2 identical routes

Equilibrium

Nash

Mixed equilibrium

- Mixed strategies $\pi^i = (\pi^{ir})_{r \in \mathcal{R}_i} \in \Delta(\mathcal{R}_i)$
- Expected costs

$$c_i(\pi^i,\pi^{-i})=\mathbb{E}_{\pi}(c_i(r_i,r_{-i}))=\sum_{r\in\mathcal{R}_i}\pi^{ir}\sum_{a\in r}\mathbb{E}(s_a(1+u_a^{-i})).$$

where
$$u_a^{-i} = \#\{j \neq i : a \in r_j\}.$$

Definition

A mixed Nash equilibrium is a strategy profile $(\pi^i)_{i \in I}$ so that for all i

$$c_i(\pi^i,\pi^{-i}) \leq c_i(r,\pi^{-i}) \qquad \forall \ r \in \Delta(\mathcal{R}_i)$$

Multiple mixed equilibria... Examples with 2 identical routes

Nash

Rosenthal's potential

Theorem (Rosenthal'73)

Consider the potential function

$$\Phi((r_i)_{i\in I}) = \sum_{a\in A}\sum_{j=1}^{u_a}s_a(j).$$

Then for each player $i \in I$ and every alternative path $r'_i \neq r_i$

$$\Phi(r'_i, r_{-i}) - \Phi(r_i, r_{-i}) = c_i(r'_i, r_{-i}) - c_i(r_i, r_{-i}).$$

Corollary

- a) There exist pure Nash equilibria: any (local) minimum of $\Phi(\cdot)$
- b) Best response dynamics converge in finitely many iterations to a Nash equilibrium in pure strategies... but require full information !

Rosenthal's potential – Proof

If player *i* changes from r_i to r'_i the new loads are

$$u'_{a} = \begin{cases} u_{a} + 1 & \text{for } a \in r'_{i} \setminus r_{i} \\ u_{a} - 1 & \text{for } a \in r_{i} \setminus r'_{i} \\ u_{a} & \text{otherwise} \end{cases}$$

$$\begin{split} \Phi(r'_{i}, r_{-i}) - \Phi(r_{i}, r_{-i}) &= \sum_{a \in r'_{i} \setminus r_{i}} s_{a}(u_{a}+1) - \sum_{a \in r_{i} \setminus r'_{i}} s_{a}(u_{a}) \\ &= \sum_{a \in r'_{i}} s_{a}(u'_{a}) - \sum_{a \in r_{i}} s_{a}(u_{a}) \\ &= c_{i}(r'_{i}, r_{-i}) - c_{i}(r_{i}, r_{-i}) \end{split}$$

Adaptive dynamics and equilibrium

Dynamical models that sustain equilibrium? (C-Melo-Sorin'10)

- $i = 1, \ldots, N$ drivers
- $r = 1, \ldots, M$ routes

 c_u^r = travel time of route r under a load of u drivers

Adpative dynamics in repeated games

Fictitious play, stochastic fictitious play, reinforcement dynamics, replicator dynamics, asymptotic calibration... dozens of papers in last 20 years

Fudenberg D., Levine D.K., *The Theory of Learning in Games* MIT Press (1998)

Hofbauer J., Sigmund K., *Evolutionary Games and Population Dynamics* Cambridge University Press (1998)

Young P., *Strategic Learning and its Limits* Oxford University Press (2004)

Sandholm W., *Population Games and Evolutionary Dynamics* Forthcoming (2011)

State variable: x^{ir} = perception of driver *i* on route *r*

State variable: x^{ir} = perception of driver *i* on route *r* Random choice: Y^{ir} = $\begin{cases} 1 & \text{if } i \text{ takes route } r \\ 0 & \text{otherwise} \end{cases}$ π^{ir} = $\mathbb{P}(Y^{ir}=1) = \frac{\exp(-\beta x^{ir})}{\sum_{\ell} \exp(-\beta x^{i\ell})}$

State variable: x^{ir} = perception of driver *i* on route *r* Random choice: Y^{ir} = $\begin{cases} 1 & \text{if } i \text{ takes route } r \\ 0 & \text{otherwise} \end{cases}$ π^{ir} = $\mathbb{P}(Y^{ir}=1) = \frac{\exp(-\beta x^{ir})}{\sum_{\ell} \exp(-\beta x^{i\ell})}$ Route loads: u^r = $\sum_i Y^{ir}$

State variable: x^{ir} = perception of driver *i* on route *r* Random choice: Y^{ir} = $\begin{cases} 1 & \text{if } i \text{ takes route } r \\ 0 & \text{otherwise} \end{cases}$ π^{ir} = $\mathbb{P}(Y^{ir}=1) = \frac{\exp(-\beta x^{ir})}{\sum_{\ell} \exp(-\beta x^{i\ell})}$ Route loads: u^r = $\sum_i Y^{ir}$

Dynamics:

Minimal information: Players only observe their own payoff !

State variable: x^{ir} = perception of driver *i* on route *r* Random choice: Y^{ir} = $\begin{cases} 1 & \text{if } i \text{ takes route } r \\ 0 & \text{otherwise} \end{cases}$ π^{ir} = $\mathbb{P}(Y^{ir}=1)$ = $\frac{\exp(-\beta x^{ir})}{\sum_{\ell} \exp(-\beta x^{i\ell})}$ Route loads: u^r = $\sum_i Y^{ir}$

Dynamics:

$$x_n^{ir} = \begin{cases} (1-\alpha_n)x_{n-1}^{ir} + \alpha_n c_{u_n^r}^r & \text{if } Y_n^{ir} = 1\\ x_{n-1}^{ir} & \text{if } Y_n^{ir} = 0 \end{cases}$$

Minimal information: Players only observe their own payoff !

State variable: x^{ir} = perception of driver *i* on route *r* Random choice: Y^{ir} = $\begin{cases} 1 & \text{if } i \text{ takes route } r \\ 0 & \text{otherwise} \end{cases}$ π^{ir} = $\mathbb{P}(Y^{ir}=1) = \frac{\exp(-\beta x^{ir})}{\sum_{\ell} \exp(-\beta x^{i\ell})}$ Route loads: u^r = $\sum_i Y^{ir}$

Dynamics:

$$x_n^{ir} = x_{n-1}^{ir} + \alpha_n \underbrace{Y_n^{ir}[c_{u_n^r}^r - x_{n-1}^{ir}]}_{\widetilde{V}_n^{ir}}$$

Minimal information: Players only observe their own payoff !

Stochastic Approximation: basic framework (Robbins-Monro'51, Ljung'71,..., Benaim-Hirsch'96)

A Robbins-Monro process is a stochastic process of the form

$$(RM) \qquad \qquad \frac{x_{n+1}-x_n}{\alpha_{n+1}} = F(x_n) + u_{n+1}$$

with u_n a sequence of random variables adapted to a filtration $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$: u_n is \mathcal{F}_n -measurable with $\mathbb{E}(u_{n+1}|\mathcal{F}_n) = 0$.

Stochastic Approximation: basic framework

(Robbins-Monro'51, Ljung'71,..., Benaim-Hirsch'96)

A Robbins-Monro process is a stochastic process of the form

$$\frac{x_{n+1}-x_n}{\alpha_{n+1}}=F(x_n)+u_{n+1}$$

with u_n a sequence of random variables adapted to a filtration $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$: u_n is \mathcal{F}_n -measurable with $\mathbb{E}(u_{n+1}|\mathcal{F}_n) = 0$. Such a process can be interpreted as a stochastically perturbed discretization of the differential equation

(DD)

(RM)

$$\frac{dx}{dt} = F(x)$$

Stochastic Approximation: attractors and convergence

Under the following conditions (with $p \ge 2$)

- *x_n* bounded
- u_n bounded in L^p

•
$$\sum \alpha_n = \infty$$
 and $\sum \alpha_n^{1+p/2} < \infty$

the ω -limit set of the sequence $(x_n)_{n \in \mathbb{N}}$ generated by (RM) is \mathbb{P} -almost surely a compact set which is invariant for (DD) with no proper attractor.

insert figure ICT

Stochastic Approximation: attractors and convergence

Under the following conditions (with $p \ge 2$)

- *x_n* bounded
- u_n bounded in L^p

•
$$\sum \alpha_n = \infty$$
 and $\sum \alpha_n^{1+p/2} < \infty$

the ω -limit set of the sequence $(x_n)_{n \in \mathbb{N}}$ generated by (RM) is \mathbb{P} -almost surely a compact set which is invariant for (DD) with no proper attractor.

insert figure ICT

Theorem

Under the assumptions above

- If x^* is a global attractor of (DD) then $\mathbb{P}(x_n \to x^*) = 1$
- **2** If x^* is a local attractor of (DD) then $\mathbb{P}(x_n \to x^*) > 0$

Stochastic Approximation: example statistical estimation (Robbins-Monro'51)

Problem: Estimate the intensity $x \ge 0$ for a radiation therapy which allows to reduce a tumor by a fraction ρ (in expected value).

Stochastic Approximation: example statistical estimation (Robbins-Monro'51)

Problem: Estimate the intensity $x \ge 0$ for a radiation therapy which allows to reduce a tumor by a fraction ρ (in expected value).

Treatment effectivity is a <u>bounded</u> random variable $Y \sim \mathcal{F}(x)$ with $\mathbb{E}(Y) = M(x)$ an unknown increasing function of x. We assume that there is a unique solution θ of the equation $M(\theta) = \rho$.

Stochastic Approximation

Stochastic Approximation: example statistical estimation (Robbins-Monro'51)

Problem: Estimate the intensity $x \ge 0$ for a radiation therapy which allows to reduce a tumor by a fraction ρ (in expected value).

Treatment effectivity is a <u>bounded</u> random variable $Y \sim \mathcal{F}(x)$ with $\mathbb{E}(Y) = M(x)$ an unknown increasing function of x. We assume that there is a unique solution θ of the equation $M(\theta) = \rho$.

We observe outcomes $y_n = Y(x_n)$ at levels $x_0, x_1, x_2, ...$ and update

$$x_{n+1} = x_n + \alpha_{n+1}(\rho - y_n).$$

with $(\alpha_n)_{n\in\mathbb{N}}\in\ell^2\setminus\ell^1$.

Stochastic Approximation

Stochastic Approximation: example statistical estimation (Robbins-Monro'51)

Problem: Estimate the intensity $x \ge 0$ for a radiation therapy which allows to reduce a tumor by a fraction ρ (in expected value).

Treatment effectivity is a <u>bounded</u> random variable $Y \sim \mathcal{F}(x)$ with $\mathbb{E}(Y) = M(x)$ an unknown increasing function of x. We assume that there is a unique solution θ of the equation $M(\theta) = \rho$.

We observe outcomes $y_n = Y(x_n)$ at levels $x_0, x_1, x_2, ...$ and update

$$x_{n+1} = x_n + \alpha_{n+1}(\rho - y_n).$$

with $(\alpha_n)_{n \in \mathbb{N}} \in \ell^2 \setminus \ell^1$. The corresponding ODE

$$\frac{dx}{dt} = \rho - M(x)$$

has θ as its unique global attractor so that $x_n \rightarrow \theta$ almost surely.

Stochastic Approximation: example law of large numbers

Let $(Y_k)_{k\in\mathbb{N}}$ be a sequence of i.i.d. <u>bounded</u> random variables with expected value μ . Let $x_n = \frac{1}{n}(Y_1 + \cdots + Y_n)$.

Stochastic Approximation: example law of large numbers

Let $(Y_k)_{k\in\mathbb{N}}$ be a sequence of i.i.d. <u>bounded</u> random variables with expected value μ . Let $x_n = \frac{1}{n}(Y_1 + \cdots + Y_n)$.

Setting $\alpha_n = \frac{1}{n}$ we have

$$\begin{array}{rcl} \frac{x_{n+1}-x_n}{\alpha_{n+1}} & = & Y_{n+1}-x_n \\ & = & \mu-x_n+u_{n+1} \end{array}$$

Stochastic Approximation: example law of large numbers

Let $(Y_k)_{k\in\mathbb{N}}$ be a sequence of i.i.d. <u>bounded</u> random variables with expected value μ . Let $x_n = \frac{1}{n}(Y_1 + \cdots + Y_n)$.

Setting $\alpha_n = \frac{1}{n}$ we have

$$\begin{array}{rcl} \frac{x_{n+1}-x_n}{\alpha_{n+1}} &=& Y_{n+1}-x_n\\ &=& \mu-x_n+u_{n+1} \end{array}$$

The corresponding ODE is

$$\frac{dx}{dt} = \mu - x$$

whose solution is exponential with $x(t) \rightarrow \mu$, thus $x_n \rightarrow \mu$ almost surely.

Back to adaptive learning in the atomic congestion game

State variable: x^{ir} = perception of driver *i* on route *r* Random choice: Y^{ir} = $\begin{cases} 1 & \text{if } i \text{ takes route } r \\ 0 & \text{otherwise} \end{cases}$ π^{ir} = $\mathbb{P}(Y^{ir}=1) = \frac{\exp(-\beta x^{ir})}{\sum_{\ell} \exp(-\beta x^{i\ell})}$ Route loads: u^r = $\sum_i Y^{ir}$ Dynamics:

$$x_n^{ir} = x_{n-1}^{ir} + \alpha_n \underbrace{Y_n^{ir}[c_{u_n^r}^r - x_{n-1}^{ir}]}_{\widetilde{V}_n^{ir}}$$

Continuous-time adaptive dynamics

(LP)

$$\boxed{\frac{x_n - x_{n-1}}{\alpha_n} = \tilde{V}_n}$$

Learning process
Continuous-time adaptive dynamics

$$(LP) \qquad \qquad \frac{x_n - x_{n-1}}{\alpha_n} = \tilde{V}_n$$

Mean field approximation: if $\sum \alpha_{\textit{n}} = \infty$ and $\sum \alpha_{\textit{n}}^2 < \infty$

$$\frac{dx}{dt} = \mathbb{E}(\tilde{V}|x)$$

Adaptive dynamics

Learning process

Analytic expression for the mean field

$$\mathbb{E}(\tilde{V}^{ir}|x) = \pi^{ir}[\underbrace{\mathbb{E}(c_{u^r}^r|Y^{ir}=1)}_{F^{ir}(\pi)} - x^{ir}]$$

Analytic expression for the mean field

$$\mathbb{E}(\tilde{V}^{ir}|x) = \pi^{ir}[\underbrace{\mathbb{E}(c_{u^r}^r|Y^{ir}=1)}_{F^{ir}(\pi)} - x^{ir}]$$

$$\underbrace{\sum_{u=1}^{N-1} c_{1+u}^r}_{|A|=u} \prod_{j \in A} \pi^{jr} \prod_{j \notin A} (1-\pi^{jr})$$

Analytic expression for the mean field

$$\mathbb{E}(\tilde{V}^{ir}|x) = \pi^{ir}[\underbrace{\mathbb{E}(c_{u'}^r|Y^{ir}=1)}_{F^{ir}(\pi)} - x^{ir}]$$

Adaptive dynamics $\frac{dx^{ir}}{dt} = \pi^{ir}(x)[C^{ir}(x) - x^{ir}]$ $C^{ir}(x) = F^{ir}(\Pi(x))$ $\Pi(x) = (\pi^{ir}(x))$

Simulation: 2 drivers \times 2 routes

$\frac{dx}{dt}^{1}$ $\frac{dx}{dt}^{1}$	' = ' =	$\pi^{a}(x^{1})[C^{a}(x^{2}) - x^{1a}]$ $\pi^{b}(x^{1})[C^{b}(x^{2}) - x^{1b}]$	(driver 1)
$\frac{dx^{2}}{dt}$ $\frac{dx^{2}}{dt}$	' = ' =	$\pi^{a}(x^{2})[C^{a}(x^{1}) - x^{2a}]$ $\pi^{b}(x^{2})[C^{b}(x^{1}) - x^{2b}]$	(driver 2)

$$\pi^{a}(x) = \exp(-\beta x^{a}) / [\exp(-\beta x^{a}) + \exp(-\beta x^{b})]$$

$$\pi^{b}(x) = \exp(-\beta x^{b}) / [\exp(-\beta x^{a}) + \exp(-\beta x^{b})]$$

$$C^{a}(x) = c_{1}^{a} \pi^{b}(x) + c_{2}^{a} \pi^{a}(x)$$

$$C^{b}(x) = c_{1}^{b} \pi^{a}(x) + c_{2}^{b} \pi^{b}(x)$$

Simulation: 2 drivers \times 2 routes

Simulation: 5 drivers \times 3 routes

Simulation: 50 drivers \times 3 routes

Rest points — an underlying game

$$\mathcal{E} = \{\text{rest points}\} = \{x : x^{ir} = C^{ir}(x) \text{ for all } i, r\}$$
$$x = C(x) = T(\Pi(x)) \Leftrightarrow \begin{cases} x = T(\pi) \\ \pi = \Pi(x) \end{cases}$$

Thus $x \rightleftharpoons \pi$ bijects \mathcal{E} with $\Pi(\mathcal{E}) = \{\text{rest probabilities}\}$

Rest points — an underlying game

$$\mathcal{E} = \{\text{rest points}\} = \{x : x^{ir} = C^{ir}(x) \text{ for all } i, r\}$$
$$x = C(x) = T(\Pi(x)) \Leftrightarrow \begin{cases} x = T(\pi) \\ \pi = \Pi(x) \end{cases}$$

Thus $x \rightleftharpoons \pi$ bijects \mathcal{E} with $\Pi(\mathcal{E}) = \{\text{rest probabilities}\}$

Theorem (C-Melo-Sorin'10)

 $\Pi(\mathcal{E}) = N$ ash equilibria of the N-person game with strategies $\pi^i \in \Delta(R)$ and costs

$$G^{i}(\pi) = \langle \pi^{i}, F^{i}(\pi)
angle + rac{1}{eta} \sum_{r} \pi^{ir} [\ln \pi^{ir} - 1]$$

Denote $\delta = \max_{r,u} [c_u^r - c_{u-1}^r]$ the maximal congestion jump

Denote $\delta = \max_{r,u} [c_u^r - c_{u-1}^r]$ the maximal congestion jump

Theorem (C-Melo-Sorin'10)

1 There exist rest points

Denote $\delta = \max_{r,u} [c_u^r - c_{u-1}^r]$ the maximal congestion jump

Theorem (C-Melo-Sorin'10)

- **1** There exist rest points
- **2** Exactly one of them is symmetric: $\hat{x}^{ir} = \hat{x}^{jr}$

Denote $\delta = \max_{r,u} [c_u^r - c_{u-1}^r]$ the maximal congestion jump

Theorem (C-Melo-Sorin'10)

- There exist rest points
- **2** Exactly one of them is symmetric: $\hat{x}^{ir} = \hat{x}^{jr}$
- **(3)** $\beta \delta < 2 \Rightarrow \hat{x}$ is the unique rest point and a local attractor

Denote $\delta = \max_{r,u} [c_u^r - c_{u-1}^r]$ the maximal congestion jump

Theorem (C-Melo-Sorin'10)

- There exist rest points
- **2** Exactly one of them is symmetric: $\hat{x}^{ir} = \hat{x}^{jr}$
- **(3)** $\beta \delta < 2$ \Rightarrow \hat{x} is the unique rest point and a local attractor

Potential function

Theorem (C-Melo-Sorin'10)

The map F admits a potential, namely $F(\pi) = \nabla H(\pi)$ where

$$H(\pi)=\sum_{r}\mathbb{E}(c_1^r+c_2^r+\cdots+c_{U^r}^r).$$

Potential function

Theorem (C-Melo-Sorin'10)

The map F admits a potential, namely $F(\pi) = \nabla H(\pi)$ where

$$H(\pi)=\sum_{r}\mathbb{E}(c_1^r+c_2^r+\cdots+c_{U^r}^r).$$

Denote

$$\begin{array}{lll} H_{\beta}(\pi) &=& H(\pi) + \frac{1}{\beta} \sum_{ir} \pi^{ir} \ln(\pi^{ir}) \\ \mathcal{L}(\pi; \lambda) &=& H_{\beta}(\pi) - \sum_{i} \lambda^{i} [\sum_{r} \pi^{ir} - 1] \end{array}$$

Equivalent Lagrangian dynamics

The adaptive dynamics can be written

$$\frac{dx}{dt} = -\frac{1}{\beta} \nabla_{x} L(x; \lambda(x))$$

where

$$L(x; \lambda) = \mathcal{L}(\pi(x, \lambda); \lambda)$$

$$\pi^{ir}(x, \lambda) = \exp(-\beta(x^{ir} - \lambda^{i}))$$

$$\lambda^{i}(x) = -\frac{1}{\beta}\ln(\sum_{r} \exp(-\beta x^{ir}))$$

Rest points as extremals

Theorem (C-Melo-Sorin'10)

For $\pi = \Pi(x)$ the following are equivalent (a) $x \in \mathcal{E}$ (b) $\nabla_x L(x, \lambda(x)) = 0$ (c) π is a Nash equilibrium (d) $\nabla_\pi \mathcal{L}(\pi, \lambda) = 0$ for some $\lambda \in \mathbb{R}^M$ (e) π is a critical point of $H_\beta(\cdot)$ on $\Delta(R)^N$ Moreover, if $\beta\delta < 1$ then $H_\beta(\cdot)$ is strongly convex and $\hat{\pi} = \Pi(\hat{x})$ is its

Learning

unique minimizer on $\Delta(R)^N$.

Rest points — Bifurcation: 2 drivers \times 2 routes

Symmetric equilibrium \hat{x} is stable \Leftrightarrow

$$|rac{A}{\Delta}| > h(rac{4}{eta\Delta})$$

$$D(z) = \sqrt{1-z} + z \tanh^{-1}\sqrt{1-z}$$

 $A = (c_2^a + c_1^a) - (c_2^b + c_1^b)$
 $\Delta = (c_2^a - c_1^a) + (c_2^b - c_1^b)$

Bifurcation: 2 drivers \times 2 routes

State dependent update — Mario Bravo 2012

Players exploit memory of play for updating

$$x_{n}^{ir} - x_{n-1}^{ir} = \frac{1}{\theta_{n}^{ir}} Y_{n}^{ir} [c_{u_{n}^{r}}^{r} - x_{n}^{ir}]$$

with θ_n^{ir} the number of times route r has been used by i up to time n.

State dependent update — Mario Bravo 2012

Players exploit memory of play for updating

$$x_{n}^{ir} - x_{n-1}^{ir} = \frac{1}{\theta_{n}^{ir}} Y_{n}^{ir} [c_{u_{n}^{r}}^{r} - x_{n}^{ir}]$$

with θ_n^{ir} the number of times route r has been used by i up to time n.

The empirical frequencies of play $\pi_n^{ir} = \theta_n^{ir}/n$ satisfy the recursion

$$\pi_n^{ir} - \pi_{n-1}^{ir} = \frac{1}{n} \left(\mathbb{1}_{\{r_n^i = r\}} - \pi_{n-1}^{ir} \right)$$

State dependent update — Mario Bravo 2012

MB's process leads to the coupled adaptive dynamics

(CAD)
$$\begin{cases} \dot{x}^{ir} = \frac{\pi^{ir}(x)}{\pi^{ir}} [C^{ir}(x) - x^{ir}] \\ \dot{\pi}^{ir} = \pi^{ir}(x) - \pi^{ir} \end{cases}$$

Theorem (Bravo'12)

- Same rest points: $x^* \in \mathcal{E}$, $\pi^* = \pi(x^*)$
- 2 $\beta\delta < 2 \Rightarrow$ convergence with positive probability
- **3** $\beta\delta < \frac{2}{N-1} \Rightarrow$ almost sure convergence

Comparison of discrete dynamics speeds

$$\|(x_n, \pi_n) - (x^*, \pi^*)\|$$
 vs $\|x_n - x^*\|$

Extensions and open problems

- Extended to finite games and general discrete choice models
- Applications to multipath TCP/IP protocol design

Extensions and open problems

- Extended to finite games and general discrete choice models
- Applications to multipath TCP/IP protocol design

• Open problems

- Almost sure convergence beyond bifurcation threshold?
- Speed of convergence and large deviations?
- Understand general structure of rest point bifurcation?
- More realistic adaptive learning dynamics?
- Connections with classical equilibrium models?

Internet traffic control — TCP/IP

TCP/IP – Single path routing

- G = (N, A) communication network
- Each source $s \in S$ transmits packets from origin o_s to destination d_s
- Along which route? At which rate?

TCP/IP - Current protocols

- Route selection (RIP/OSPF/IGRP/BGP/EGP) Dynamic adjustment of routing tables Slow timescale evolution (15-30 seconds) Network Layer 3
- Rate control (TCP Reno/Tahoe/Vegas)
 Dynamic adjustment of source rates congestion window
 Fast timescale evolution (100-300 milliseconds)
 Transport Layer 4

Congestion measures: link delays / packet loss

• Links have random delays $\tilde{\lambda}_a = \lambda_a + \epsilon_a$ with $\mathbb{E}(\epsilon_a) = 0$

 $\tilde{\lambda}_{a} =$ queuing + transmission + propagation

• And packet loss probabilities p_a because of finite queuing buffers

TCP – Congestion window

$$x_s = \text{source rate} \sim \frac{\text{congestion window}}{\text{round-trip time}} = \frac{W_s}{\tau_s}$$

TCP – Congestion control

Sources adjust transmission rates in response to congestion Basic principle: higher congestion \Leftrightarrow smaller rates

- λ_a : link congestion measure (loss pbb, queuing delay)
- x_s : source transmission rate [packets/sec]

 $q_s = \sum_{a \in s} \lambda_a$ (end-to-end congestion) $y_a = \sum_{s \ni a} x_s$ (aggregate link loads)

Decentralized algorithms

$$\begin{array}{lll} x_s^{t+1} &=& F_s(x_s^t, q_s^t) & (\mathsf{TCP} - \mathsf{source dynamics}) \\ \lambda_a^{t+1} &=& G_a(\lambda_a^t, y_a^t) & (\mathsf{AQM} - \mathsf{link dynamics}) \end{array}$$

TCP – Congestion control

Sources adjust transmission rates in response to congestion Basic principle: higher congestion \Leftrightarrow smaller rates

 λ_a : link congestion measure (loss pbb, queuing delay)

x_s : source transmission rate [packets/sec]

$$\begin{array}{ll} q_s = \sum_{a \in s} \lambda_a & (\text{end-to-end congestion}) \\ y_a = \sum_{s \ni a} x_s & (\text{aggregate link loads}) \end{array}$$

Decentralized algorithms

$$\begin{array}{lll} x_s^{t+1} &=& F_s(x_s^t, q_s^t) & (\mathsf{TCP} - \mathsf{source dynamics}) \\ \lambda_a^{t+1} &=& G_a(\lambda_a^t, y_a^t) & (\mathsf{AQM} - \mathsf{link dynamics}) \end{array}$$

TCP – Congestion control

Sources adjust transmission rates in response to congestion Basic principle: higher congestion \Leftrightarrow smaller rates

 λ_a : link congestion measure (loss pbb, queuing delay)

x_s : source transmission rate [packets/sec]

$$\begin{array}{ll} q_s = \sum_{a \in s} \lambda_a & (\text{end-to-end congestion}) \\ y_a = \sum_{s \ni a} x_s & (\text{aggregate link loads}) \end{array}$$

Decentralized algorithms

$$\begin{array}{lll} x_s^{t+1} &=& F_s(x_s^t,q_s^t) & (\mathsf{TCP}-\mathsf{source dynamics}) \\ \lambda_a^{t+1} &=& G_a(\lambda_a^t,y_a^t) & (\mathsf{AQM}-\mathsf{link dynamics}) \end{array}$$

Example: TCP-Reno / packet loss probability

AIMD control

 $W_{s}^{t+\tau_{s}} = \begin{cases} W_{s}^{t}+1 & \text{if } W_{s}^{t} \text{ packets are successfully transmitted} \\ \lceil W_{s}^{t}/2 \rceil & \text{one or more packets are lost (duplicate ack's)} \end{cases}$

 $\pi_s^t = \prod_{a \in s} (1 - p_a^t) = ext{success probability (per packet)}$

Additive congestion measure

$$\left. \begin{array}{l} q_s^t \triangleq -\ln(\pi_s^t) \\ \lambda_a^t \triangleq -\ln(1 - p_a^t) \end{array} \right\} \Rightarrow q_s^t = \sum_{a \in s} \lambda_a^t \end{array}$$

Approximate model for rate dynamics

$$\mathbb{E}(W_s^{t+\tau_s}|W_s^t) \sim e^{-q_s^t W_s^t} (W_s^t+1) + (1 - e^{-q_s^t W_s^t}) \lceil W_s^t/2 \rceil$$

$$\Rightarrow \left| x_s^{t+1} = x_s^t + \frac{1}{2\tau_s} \left[e^{-\tau_s q_s^t x_s^t} \left(x_s^t + \frac{2}{\tau_s} \right) - x_s^t \right] \right|$$

Equilibrium Routing under Uncertainty
Example: TCP-Reno / packet loss probability

AIMD control

 $W_{s}^{t+\tau_{s}} = \begin{cases} W_{s}^{t} + 1 & \text{if } W_{s}^{t} \text{ packets are successfully transmitted} \\ \lceil W_{s}^{t}/2 \rceil & \text{one or more packets are lost (duplicate ack's)} \end{cases}$ $\pi_{s}^{t} = \prod_{a \in s} (1 - p_{a}^{t}) = \text{success probability (per packet)}$

Additive congestion measure

$$\begin{array}{l} q_s^t \triangleq -\ln(\pi_s^t) \\ \lambda_a^t \triangleq -\ln(1 - p_a^t) \end{array} \right\} \Rightarrow q_s^t = \sum_{a \in s} \lambda_a^t \end{array}$$

Approximate model for rate dynamics

$$\mathbb{E}(W_s^{t+\tau_s}|W_s^t) \sim e^{-q_s^t W_s^t} (W_s^t+1) + (1 - e^{-q_s^t W_s^t}) \lceil W_s^t/2 \rceil$$

$$\Rightarrow \left| x_s^{t+1} = x_s^t + \frac{1}{2\tau_s} \left[e^{-\tau_s q_s^t x_s^t} \left(x_s^t + \frac{2}{\tau_s} \right) - x_s^t \right] \right|$$

Example: TCP-Reno / packet loss probability

AIMD control

 $W_{s}^{t+\tau_{s}} = \begin{cases} W_{s}^{t} + 1 & \text{if } W_{s}^{t} \text{ packets are successfully transmitted} \\ \lceil W_{s}^{t}/2 \rceil & \text{one or more packets are lost (duplicate ack's)} \end{cases}$ $\pi_{s}^{t} = \prod_{a \in s} (1 - p_{a}^{t}) = \text{success probability (per packet)}$

Additive congestion measure

$$\left. \begin{array}{l} q_s^t \triangleq -\ln(\pi_s^t) \\ \lambda_a^t \triangleq -\ln(1 - p_a^t) \end{array} \right\} \Rightarrow q_s^t = \sum_{a \in s} \lambda_a^t \end{array}$$

Approximate model for rate dynamics

$$\mathbb{E}(W^{t+\tau_s}_s|W^t_s) \sim e^{-q^t_s W^t_s}(W^t_s+1) + (1-e^{-q^t_s W^t_s}) \lceil W^t_s/2 \rceil$$

$$\Rightarrow \left| x_s^{t+1} = x_s^t + \frac{1}{2\tau_s} \left[e^{-\tau_s q_s^t x_s^t} \left(x_s^t + \frac{2}{\tau_s} \right) - x_s^t \right] \right|$$

Example: AQM / Droptail \longrightarrow RED-REM

Marking probability on links controlled by AQM

$$p_a^t = \varphi_a(r_a^t)$$

as a function of average queue length

Loss probability vs. average queue length

R. Cominetti (UAI – Chile)

Equilibrium Routing under Uncertainty

Network Utility Maximization

- Kelly, Maullo and Tan (1998) proposed an optimization-based model for distributed rate control in networks.
- Low, Srikant, etc. (1999-2002) showed that current TCP/AQM control algorithms solve an implicit network optimization problem.
- During last decade, the model has been used and extended to study the performance of wired and wireless networks.

NUM

$$\begin{array}{lll} x_s^{t+1} &=& F_s(x_s^t,q_s^t) & (\mathsf{TCP}-\mathsf{source dynamics}) \\ \lambda_a^{t+1} &=& G_a(\lambda_a^t,y_a^t) & (\mathsf{AQM}-\mathsf{link dynamics}) \end{array}$$

$$\begin{array}{rcl} x_s &=& F_s(x_s,q_s) & ({\sf TCP-source\ equilibrium}) \\ \lambda_a &=& G_a(\lambda_a,y_a) & ({\sf AQM-link\ equilibrium}) \end{array}$$

$$\begin{array}{rcl} x_s &=& F_s(x_s,q_s) & ({\sf TCP-source\ equilibrium}) \\ \lambda_a &=& G_a(\lambda_a,y_a) & ({\sf AQM-link\ equilibrium}) \end{array}$$

$$\label{eq:constraint} \begin{array}{c} \label{eq:constraint} \\ \hline x_s = f_s(q_s) & (\text{decreasing}) \\ \lambda_a = \psi_a(y_a) & (\text{increasing}) \\ q_s = \sum_{a \in s} \lambda_a \\ y_a = \sum_{s \ni a} x_s \end{array}$$

$$\begin{array}{l} x_s = f_s(q_s) & (\text{decreasing}) \\ \lambda_a = \psi_a(y_a) & (\text{increasing}) \\ q_s = \sum_{a \in s} \lambda_a \\ y_a = \sum_{s \ni a} x_s \end{array} \Leftrightarrow \begin{array}{l} x_s = f_s(\sum_{a \in s} \lambda_a) \\ \lambda_a = \psi_a(\sum_{s \ni a} x_s) \end{array}$$

Examples

TCP-Reno (loss probability)

$$q_{s} = f_{s}^{-1}(x_{s}) \triangleq \frac{1}{\tau_{s}x_{s}}\ln(1+\frac{2}{\tau_{s}x_{s}})$$
$$\lambda_{a} = \psi_{a}(y_{a}) \triangleq \frac{\delta y_{a}}{\tau_{a}-y_{a}}$$

TCP-Vegas (queueing delay)

$$q_{s} = f_{s}^{-1}(x_{s}) \triangleq \frac{\alpha \tau_{s}}{x_{s}}$$
$$\lambda_{a} = \psi_{a}(y_{a}) \triangleq \frac{y_{a}}{c_{a} - y_{a}}$$

Steady state - Primal optimality

$$x_{s} = f_{s}(\sum_{a \in s} \lambda_{a})$$
$$\lambda_{a} = \psi_{a}(\sum_{s \ni a} x_{s})$$

$$f_s^{-1}(x_s) = \sum_{a \in s} \lambda_a = \sum_{a \in s} \psi_a(\sum_{u \ni a} x_u)$$

$$(P) \quad \min_{x} \sum_{s \in S} U_s(x_s) + \sum_{a \in A} \Psi_a(\sum_{s \ni a} x_s)$$

$$U'_{s}(\cdot) = -f_{s}^{-1}(\cdot)$$
$$\Psi'_{a}(\cdot) = \psi_{a}(\cdot)$$

Steady state - Primal optimality

$$x_{s} = f_{s}(\sum_{a \in s} \lambda_{a})$$
$$\lambda_{a} = \psi_{a}(\sum_{s \ni a} x_{s})$$

$$f_s^{-1}(x_s) = \sum_{a \in s} \lambda_a = \sum_{a \in s} \psi_a(\sum_{u \ni a} x_u)$$

$$(P) \quad \min_{x} \sum_{s \in S} U_s(x_s) + \sum_{a \in A} \Psi_a(\sum_{s \ni a} x_s)$$

$$U'_{s}(\cdot) = -f_{s}^{-1}(\cdot)$$

 $\Psi'_{a}(\cdot) = \psi_{a}(\cdot)$

Steady state – Dual optimality

$$\begin{aligned} x_s &= f_s(\sum_{a \in s} \lambda_a) \\ \lambda_a &= \psi_a(\sum_{s \ni a} x_s) \end{aligned}$$

$$\psi_a^{-1}(\lambda_a) = \sum_{s \ni a} x_s = \sum_{s \ni a} f_s(\sum_{b \in s} \lambda_b)$$

(D)
$$\min_{\lambda} \sum_{a \in A} \Psi_a^*(\lambda_a) + \sum_{s \in S} U_s^*(\sum_{a \in S} \lambda_a)$$

Steady state – Dual optimality

$$x_{s} = f_{s}(\sum_{a \in s} \lambda_{a})$$
$$\lambda_{a} = \psi_{a}(\sum_{s \ni a} x_{s})$$

$$\psi_a^{-1}(\lambda_a) = \sum_{s \ni a} x_s = \sum_{s \ni a} f_s(\sum_{b \in s} \lambda_b)$$

(D)
$$\min_{\lambda} \sum_{a \in A} \Psi_a^*(\lambda_a) + \sum_{s \in S} U_s^*(\sum_{a \in S} \lambda_a)$$

Theorem (Low'2003)

$$\begin{array}{l} x_{s} = f_{s}(\sum_{a \in s} \lambda_{a}) \\ \lambda_{a} = \psi_{a}(\sum_{s \ni a} x_{s}) \end{array} \Leftrightarrow$$

x and λ are optimal solutions for (P) and (D) respectively

Relevance:

- Reverse engineering of existing protocols / forward engineering (f_s, ψ_a)
- Design distributed stable protocols to optimize prescribed utilities
- Flexible choice of congestion measure q_s

Limitations:

- Ignores delays in transmission of congestion signals
- Improper account of stochastic phenomena
- Single-path routing

Theorem (Low'2003)

$$\begin{array}{l} x_{s} = f_{s}(\sum_{a \in s} \lambda_{a}) \\ \lambda_{a} = \psi_{a}(\sum_{s \ni a} x_{s}) \end{array} \Leftrightarrow$$

x and λ are optimal solutions for (P) and (D) respectively

Relevance:

- Reverse engineering of existing protocols / forward engineering (f_s, ψ_a)
- Design distributed stable protocols to optimize prescribed utilities
- Flexible choice of congestion measure q_s

Limitations:

- Ignores delays in transmission of congestion signals
- Improper account of stochastic phenomena
- Single-path routing

Theorem (Low'2003)

$$\begin{array}{l} x_{s} = f_{s}(\sum_{a \in s} \lambda_{a}) \\ \lambda_{a} = \psi_{a}(\sum_{s \ni a} x_{s}) \end{array} \Leftrightarrow$$

x and λ are optimal solutions for (P) and (D) respectively

Relevance:

- Reverse engineering of existing protocols / forward engineering (f_s, ψ_a)
- Design distributed stable protocols to optimize prescribed utilities
- Flexible choice of congestion measure q_s

Limitations:

- Ignores delays in transmission of congestion signals
- Improper account of stochastic phenomena
- Single-path routing

Markovian Network Utility Maximization (MNUM)

- \bullet Increase transmission rates: single path \longrightarrow multi-path
- Goal: design distributed TCP protocols with multi-path routing
- Packet-level protocol that is stable and satisfies optimality criteria
- Model based on the notion of Markovian traffic equilibrium

MNUM: integrated routing & rate control

- Cross-layer design: routing + rate control
- Based on a common congestion measure: delay
- Link random delays $\tilde{\lambda}_{a} = \lambda_{a} + \epsilon_{a}$ with $\mathbb{E}(\epsilon_{a}) = 0$

 $ilde{\lambda}_{a} = \mathsf{queuing} + \mathsf{transmission} + \mathsf{propagation}$

MNUM: Markovian multipath routing

At switch *i*, packets headed to destination *d* are routed through the outgoing link $a \in A_i^+$ that minimizes the "observed" cost-to-go

$$\tilde{\tau}_{i}^{d} = \min_{\mathbf{a} \in \mathcal{A}_{i}^{+}} \underbrace{\tilde{\lambda}_{\mathbf{a}} + \tau_{j_{\mathbf{a}}}^{d}}_{\tilde{Z}_{\mathbf{a}}^{d}}$$

Markov chain with transition matrix

$$P_{ij}^{d} = \begin{cases} \mathbb{P}(\tilde{z}_{a}^{d} \leq \tilde{z}_{b}^{d}, \forall b \in A_{i}^{+}) & \text{if } i = i_{a}, j = j_{a} \\ 0 & \text{otherwise} \end{cases}$$

R. Cominetti (UAI - Chile)

Equilibrium Routing under Uncertainty

MNUM: Markovian multipath routing

At switch *i*, packets headed to destination *d* are routed through the outgoing link $a \in A_i^+$ that minimizes the "observed" cost-to-go

$$\tilde{\tau}_{i}^{d} = \min_{a \in \mathcal{A}_{i}^{+}} \underbrace{\tilde{\lambda}_{a} + \tau_{j_{a}}^{d}}_{\tilde{z}_{a}^{d}}$$

Markov chain with transition matrix

$$P_{ij}^{d} = \begin{cases} \mathbb{P}(\tilde{z}_{a}^{d} \leq \tilde{z}_{b}^{d}, \forall b \in A_{i}^{+}) & \text{if } i = i_{a}, j = j_{a} \\ 0 & \text{otherwise} \end{cases}$$

Expected flows (invariant measures)

The flow ϕ_i^d entering node *i* and directed towards *d*

$$\phi_i^d = \sum_{o_s=i \atop d_s=d} x_s + \sum_{a \in A_i^-} v_a^d$$

splits among the outgoing links a = (i, j) according to

$$v^d_{a} = \phi^d_i P^d_{ij}$$

TCP/IP M

Markovian NUM

Expected costs

Letting
$$z_a^d = \mathbb{E}(\tilde{z}_a^d)$$
 and $\tau_i^d = \mathbb{E}(\tilde{\tau}_i^d)$, we have

$$z_a^d = \lambda_a + \tau_{j_a}^d$$

$$\tau_i^d = \varphi_i^d(z^d)$$

with

$$\varphi_i^d(z^d) \triangleq \mathbb{E}(\min_{a \in A_i^+}[z_a^d + \epsilon_a^d])$$

Moreover

$$\mathbb{P}\left(\tilde{z}_{a}^{d} \leq \tilde{z}_{b}^{d}, \forall b \in A_{i}^{+}\right) = \frac{\partial \varphi_{i}^{d}}{\partial z_{a}^{d}}(z^{d})$$

TCP/IP M

Markovian NUM

Expected costs

Letting
$$z_a^d = \mathbb{E}(\tilde{z}_a^d)$$
 and $\tau_i^d = \mathbb{E}(\tilde{\tau}_i^d)$, we have

$$z_a^d = \lambda_a + \tau_{j_a}^d$$

$$\tau_i^d = \varphi_i^d(z^d)$$

with

$$\varphi_i^d(z^d) \triangleq \mathbb{E}(\min_{a \in A_i^+}[z_a^d + \epsilon_a^d])$$

Moreover

$$\mathbb{P}\left(\tilde{z}_{a}^{d} \leq \tilde{z}_{b}^{d}, \forall b \in A_{i}^{+}\right) = \frac{\partial \varphi_{i}^{d}}{\partial z_{a}^{d}}(z^{d})$$

Markovian NUM – Definition

$$\begin{aligned} x_s &= f_s(q_s) & \text{(source rate control)} \\ \lambda_a &= \psi_a(y_a) & \text{(link congestion)} \\ y_a &= \sum_d v_a^d & \text{(total link flows)} \\ q_s &= \tau_s - \tau_s^0 & \text{(end-to-end queuing delay)} \end{aligned}$$

where $\tau_s = \tau_{o_s}^{d_s}$ with expected costs given by

$$(ZQ) \quad \begin{cases} z_a^d = \lambda_a + \tau_{j_a}^d \\ \tau_i^d = \varphi_i^d(z^d) \end{cases}$$

and expected flows v^d satisfying

$$(FC) \quad \begin{cases} \phi_i^d = \sum_{o_s=i \atop d_s=d} x_s + \sum_{a \in A_i^-} v_a^d \quad \forall i \neq d \\ v_a^d = \phi_i^d \frac{\partial \varphi_i^d}{\partial z_a^d} (z^d) \qquad \forall a \in A_i^+ \end{cases}$$

MNUM Characterization: Dual problem

- (ZQ) defines implicitly z^d_a and τ^d_i as concave functions of λ
- $x_s = f_s(q_s)$ with $q_s = \tau_{o_s}^{d_s}(\lambda) \tau_{o_s}^{d_s}(\lambda^0)$ yields x_s as a function of λ
- (*FC*) then defines v_a^d as functions of λ

$$\mathsf{MNUM} \text{ conditions} \quad \Leftrightarrow \quad \psi_a^{-1}(\lambda_a) = y_a = \sum_d v_a^d(\lambda)$$

Theorem

 $MNUM \Leftrightarrow optimal \ solution \ of \ the \ strictly \ convex \ program$

$$(D) \quad \min_{\lambda} \quad \sum_{a \in A} \Psi_a^*(\lambda_a) + \sum_{s \in S} U_s^*(q_s(\lambda))$$

MNUM Characterization: Primal problem

Theorem

 $MNUM \Leftrightarrow optimal \ solution \ of$

$$\min_{(x,y,v)\in P}\sum_{s\in S}U_s(x_s)+\sum_{a\in A}\Psi_a(y_a)+\sum_{d\in D}\chi^d(v^d)$$

where

$$\chi^d(v^d) = \sup_{z^d} \sum_{a \in A} (\varphi^d_{i_a}(z^d) - z^d_a) v^d_a$$

and P is the polyhedron defined by flow conservation constraints.

Risk averse routing

What is the risk of a path?

Copenhagen - DTU Transport (www.transport.dtu.dk)

Figure 2: Example of real time illustration of congestion (Source: Vejdirektoratet, www.trafikken.dk)

Figure 7: Observations of travel time by time of day. Frederikssundsvej, inward direction

Risk-averse routing

Adelaide, South Australia (Susilawati et al. 2011)

Day to day variation in JTW travel times

Risk-averse routing

Previous: Normal, Log-normal, Gamma, Weibull **Best fit:** Burr distribution $F(x) = 1 - (1 + x^c)^{-k}$

R. Cominetti (UAI - Chile)

Equilibrium Routing under Uncertainty

+ Largie + But

Some recent literature on risk averse routing

- Loui Optimal paths in graphs with stochastic or multidimensional weights. Commun. ACM 26(9), 1983.
- [2] Bates *et al. The evaluation of reliability for personal travel.* Transportation Research E 37, 2001.
- [3] Noland, Polak *Travel time variability: a review of theoretical and empirical issues.* Transport Reviews 22, 2002.
- [4] Hollander *Direct versus indirect models for the effects of unreliability.* Transportation Research A 40, 2006.
- [5] Nie, Wu *Shortest path problem considering on-time arrival probability*. Transportation Research A 40, 2006.
- [6] Ordóñez & Stier-Moses Wardrop equilibria with risk-averse users. Transportation Science 44(1), 2010.
- [7] Engelson & Fosgerau Additive measures of travel time variability. Transportation Research B 45, 2011.

Some recent literature on risk averse routing

- [8] Nie Multiclass percentile user equilibrium with flow dependent stochasticity. Transportation Research B 45(10), 2011.
- [9] Wu, Nie Modeling heterogeneous risk-taking behavior in route choice. Transportation Research A 45(9), 2011.
- [10] Nie, Wu, Homem-de-Mello Optimal path problems with second-order stochastic dominance constraints. Networks & Spatial Economics 12(4), 2012.
- [11] Nikolova & Stier-Moses A mean-risk model for the traffic assignment problem with stochastic travel times. Operations Research 62(2), 2014.
- [12] Jaillet, Qi & Sim *Routing optimization with deadlines under uncertainty*. To appear in Operations Research.
- [13] Cominetti, Torrico Additive consistency of risk measures and its application to risk-averse routing in networks. To apear in Mathematics of Operations Research.

In this session...

- I How do we measure the risk of a path?
- Some risk measures paradoxes and drawbacks
- Solution Additive consistency entropic risk measures
- 8 Remarks optimal paths and network equilibrium
- Semarks dynamic risk measures

Setting

- Bounded random variables: $X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$
- Preferences: $X \preceq Y \Leftrightarrow \Phi(X) \leq \Phi(Y)$
- Scalar measure of risk: $\Phi(X) \in \mathbb{R}$

Some popular risk measures

$$\begin{split} \phi(X) &= \mu_X + \gamma \sigma_X \\ \phi(X) &= VaR_p(X) = (1-p) \text{-percentile} \\ \phi(X) &= AVaR_p(X) = \mathbb{E}[X|X \ge VaR_p(X)] \end{split}$$

(Markowitz)

(Value-at-Risk)

(Average VaR)

Two natural axioms

Monotonicity

if $X \leq Y$ almost surely then $\phi(X) \leq \phi(Y)$

Two natural axioms

Monotonicity

if $X \leq Y$ almost surely then $\phi(X) \leq \phi(Y)$

Additive consistency

 $\text{if } \phi(X) \leq \phi(Y) \text{ then } \phi(Z + X) \leq \phi(Z + Y) \text{ for all } Z \perp (X, Y).$

Two natural axioms

Monotonicity

if $X \leq Y$ almost surely then $\phi(X) \leq \phi(Y)$

Additive consistency

 $\text{if } \phi(X) \leq \phi(Y) \text{ then } \phi(Z\!+\!X) \leq \phi(Z\!+\!Y) \text{ for all } Z \perp (X,Y).$

Additive consistency fails for Markowitz, VaR, CVaR. Markowitz not even monotone.

How to measure risk: mean-stdev (Markowitz 1952)

$$\Phi_{\gamma}(X) = \mu + \gamma \sigma = \sum_{a \in r} \mu_a + \gamma \sqrt{\sum_{a \in r} \sigma_a^2}$$

How to measure risk: mean-stdev (Markowitz 1952)

Optimal path: $O(n^{\log n})$ subexponential algorithm (Nikolova'2010)

How to measure risk: mean-stdev (Markowitz 1952)

Optimal path: $O(n^{\log n})$ subexponential algorithm (Nikolova'2010)

DRAWBACKS:

- Lack of monotonicity
- Lack of additive consistency
- Bellman's principle fails: finding optimal paths is hard

Lack of monotonicity

Hence Y > X a.s. but for $\gamma = 12$ we have

$$\Phi_{\gamma}(Y) = \frac{5}{4} < \Phi_{\gamma}(X) = \frac{3}{2}$$

Lack of additive consistency

If $\Phi(X) \leq \Phi(Y)$ and Z independent... then $\Phi(X+Z) \leq \Phi(Y+Z)$?

Lack of additive consistency

If $\Phi(X) \leq \Phi(Y)$ and Z independent... then $\Phi(X+Z) \leq \Phi(Y+Z)$?

Not necessarily! Consider $\gamma = 1$ and

$$X \sim N(10.9,1)$$
; $Y \sim N(10,4)$; $Z \sim N(10,1)$
 $\Phi(X) = 11.9 < \Phi(Y) = 12.0$
 $\Phi(X+Z) = 22.3 > \Phi(Y+Z) = 22.2$

How to measure risk: Value-at-Risk (...late 1980's)

$$\Phi(X) = \mathit{VaR}_lpha(X) = \mathit{F}_X^{-1}(1-lpha) = (1-lpha)$$
-percentile

It is monotone. Coincides with mean-stdev for Normal distributions \Rightarrow

- Not additive consistent
- Bellman's principle fails: finding optimal paths is hard

How to measure risk: Average Value-at-Risk (Artzner *et al.* 1999; Rockafellar and Uryasev 2000)

$$\Phi(X) = A Va R_{lpha}(X) = rac{1}{lpha} \int_{0}^{lpha} Va R_t(X) dt = \mathbb{E}[X | X \geq Va R_{lpha}(X)]$$

It is monotone. Coincides with mean-stdev for Normal distributions \Rightarrow

- Not additive consistent
- Bellman's principle fails: finding optimal paths is hard

R. Cominetti (UAI - Chile)

Equilibrium Routing under Uncertainty

How to measure risk: Coherent risk measures (Artzner *et al.* 1999)

A map $\Phi: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ is a **risk measure** if $\Phi(0) = 0$ and it is

- Monotone: $X \leq Y$ a.s. $\Rightarrow \Phi(X) \leq \Phi(Y)$
- Translation invariant: $m \in \mathbb{R} \Rightarrow \Phi(X + m) = \Phi(X) + m$

How to measure risk: Coherent risk measures (Artzner *et al.* 1999)

A map $\Phi: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ is a **risk measure** if $\Phi(0) = 0$ and it is

- Monotone: $X \leq Y$ a.s. $\Rightarrow \Phi(X) \leq \Phi(Y)$
- Translation invariant: $m \in \mathbb{R} \Rightarrow \Phi(X + m) = \Phi(X) + m$

coherent: if Φ is sublinear

convex: if Φ is convex

risk averse: if $\Phi(\mathbb{E}X) \leq \Phi(X)$

additive: if $\Phi(X+Y) = \Phi(X) + \Phi(Y)$ whenever $X \perp Y$

How to measure risk: Coherent risk measures (Artzner *et al.* 1999)

A map $\Phi: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ is a **risk measure** if $\Phi(0) = 0$ and it is

- Monotone: $X \leq Y$ a.s. $\Rightarrow \Phi(X) \leq \Phi(Y)$
- Translation invariant: $m \in \mathbb{R} \Rightarrow \Phi(X + m) = \Phi(X) + m$

coherent: if Φ is sublinear

convex: if Φ is convex

risk averse: if $\Phi(\mathbb{E}X) \leq \Phi(X)$

additive: if $\Phi(X+Y) = \Phi(X) + \Phi(Y)$ whenever $X \perp Y$

- Trans. inv. $\Leftrightarrow \Phi(m) = m \text{ and } \Phi(X) \leq \Phi(Y) \Rightarrow \Phi(X+m) \leq \Phi(Y+m)$
- Under translation invariance "additive ⇔ additive consistent"

For $c: \mathbb{R} \to \mathbb{R}$ increasing the *expected utility map*

 $\Phi_c(X) = c^{-1}(\mathbb{E}\,c(X))$

is monotone, weakly continuous and satisfies the independence axiom

For $c: \mathbb{R} \to \mathbb{R}$ increasing the *expected utility map*

 $\Phi_c(X) = c^{-1}(\mathbb{E}\,c(X))$

is monotone, weakly continuous and satisfies the independence axiom

(IA)
$$\Phi(X) \leq \Phi(Y) \Rightarrow \Phi(\mathcal{L}(p, X, Z)) \leq \Phi(\mathcal{L}(p, Y, Z)).$$

For $c: \mathbb{R} \to \mathbb{R}$ increasing the *expected utility map*

 $\Phi_c(X) = c^{-1}(\mathbb{E}\,c(X))$

is monotone, weakly continuous and satisfies the independence axiom

(IA)
$$\Phi(X) \leq \Phi(Y) \Rightarrow \Phi(\mathcal{L}(p, X, Z)) \leq \Phi(\mathcal{L}(p, Y, Z)).$$

Remarks:

• These properties characterize expected utility preferences

For $c: \mathbb{R} \to \mathbb{R}$ increasing the *expected utility map*

 $\Phi_c(X) = c^{-1}(\mathbb{E}\,c(X))$

is monotone, weakly continuous and satisfies the independence axiom

(IA)
$$\Phi(X) \leq \Phi(Y) \Rightarrow \Phi(\mathcal{L}(p, X, Z)) \leq \Phi(\mathcal{L}(p, Y, Z)).$$

- These properties characterize expected utility preferences
- Risk-aversion \equiv exaggerate effect of bad events $c(\cdot)$ convex

For $c: \mathbb{R} \to \mathbb{R}$ increasing the *expected utility map*

 $\Phi_c(X) = c^{-1}(\mathbb{E}\,c(X))$

is monotone, weakly continuous and satisfies the independence axiom

(IA)
$$\Phi(X) \leq \Phi(Y) \Rightarrow \Phi(\mathcal{L}(p, X, Z)) \leq \Phi(\mathcal{L}(p, Y, Z)).$$

- These properties characterize expected utility preferences
- Risk-aversion \equiv exaggerate effect of bad events $c(\cdot)$ convex
- But Φ_c is not translation invariant, hence not a risk measure !

Theorem

The only expected utility maps Φ_c that are translation invariant — and hence risk measures — are the β -entropic risk measures

 $\Phi_{\beta}(X) = \frac{1}{\beta} \ln(\mathbb{E} e^{\beta X}).$

associated with $c(x) = e^{\beta x}$ where $-\infty < \beta < \infty$.

Theorem

The only expected utility maps Φ_c that are translation invariant — and hence risk measures — are the β -entropic risk measures

 $\Phi_{\beta}(X) = \frac{1}{\beta} \ln(\mathbb{E} e^{\beta X}).$

associated with
$$c(x) = e^{\beta x}$$
 where $-\infty < \beta < \infty$.

Remarks:

• Under more restrictive conditions similar results by Gerber'1974, Luan'2001, Heilpern'2003

Theorem

The only expected utility maps Φ_c that are translation invariant — and hence risk measures — are the β -entropic risk measures

 $\Phi_{\beta}(X) = \frac{1}{\beta} \ln(\mathbb{E} e^{\beta X}).$

associated with
$$c(x) = e^{\beta x}$$
 where $-\infty < \beta < \infty$.

- Under more restrictive conditions similar results by Gerber'1974, Luan'2001, Heilpern'2003
- \bullet Φ_β is also additive and hence additive consistent

Theorem

The only expected utility maps Φ_c that are translation invariant — and hence risk measures — are the β -entropic risk measures

 $\Phi_{\beta}(X) = \frac{1}{\beta} \ln(\mathbb{E} e^{\beta X}).$

associated with $c(x) = e^{\beta x}$ where $-\infty < \beta < \infty$.

- Under more restrictive conditions similar results by Gerber'1974, Luan'2001, Heilpern'2003
- \bullet Φ_β is also additive and hence additive consistent
- For $\beta \ge 0$ it is convex and risk averse

Theorem

The only expected utility maps Φ_c that are translation invariant — and hence risk measures — are the β -entropic risk measures

 $\Phi_{\beta}(X) = \frac{1}{\beta} \ln(\mathbb{E} e^{\beta X}).$

associated with
$$c(x) = e^{\beta x}$$
 where $-\infty < \beta < \infty$.

- Under more restrictive conditions similar results by Gerber'1974, Luan'2001, Heilpern'2003
- Φ_β is also additive and hence additive consistent
- For $\beta \ge 0$ it is convex and risk averse
- Coherent only for $\Phi_0(X) = \mathbb{E}(X)$

Expected utility

Sketch of Proof

From $\Phi_c(m+zB_p) = m + \Phi_c(zB_p)$ with B_p Bernoulli we get differentiability of $c(\cdot)$ and the functional equation

$$c'(0)[c(m+z)-c(m)] = c'(m)[c(z)-c(0)]$$

whose solutions are $c(x) = e^{\beta x}$ (up to an affine transformation).

How to measure risk: Dual theory of choice (Allais 1953; Yaari 1987)

Let $h: [0,1] \rightarrow [0,1]$ increasing, h(0) = 0, h(1) = 1. The *h*-distorted risk measure is defined by

 $\Phi^h(X) = \mathbb{E}(X^h)$

where X^h is a random variable with distribution

$$\mathbb{P}(X^h \leq x) = h(\mathbb{P}(X \leq x)).$$

Risk-aversion \equiv exaggerate the probability of bad events — $h(s) \leq s$

How to measure risk: Dual theory of choice (Allais 1953; Yaari 1987)

Let $h: [0,1] \rightarrow [0,1]$ increasing, h(0) = 0, h(1) = 1. The *h*-distorted risk measure is defined by

 $\Phi^h(X) = \mathbb{E}(X^h)$

where X^h is a random variable with distribution

$$\mathbb{P}(X^h \leq x) = h(\mathbb{P}(X \leq x)).$$

Risk-aversion \equiv exaggerate the probability of bad events — $h(s) \leq s$

These measures are characterized by the *dual independence axiom*:

(DIA)
$$\Phi(X) \le \Phi(Y) \Rightarrow \Phi(\alpha X + (1-\alpha)Z) \le \Phi(\alpha Y + (1-\alpha)Z)$$

for all X, Y, Z pairwise co-monotonic.

How to measure risk: Combine utility & distortion (Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function $c : \mathbb{R} \to \mathbb{R}$ and a distortion map $h : [0, 1] \to [0, 1]$ $\Phi^h_c(X) = c^{-1}(\mathbb{E} c(X^h)).$

Wakker: Rank dependent utilities

Characterized by weaker independence axiom: tradeoff consistency.

How to measure risk: Combine utility & distortion (Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function $c : \mathbb{R} \to \mathbb{R}$ and a distortion map $h : [0, 1] \to [0, 1]$ $\Phi^h_c(X) = c^{-1}(\mathbb{E} c(X^h)).$

Wakker: Rank dependent utilities

Characterized by weaker independence axiom: tradeoff consistency.

Translation invariance holds for all h but imposes $c(x) = e^{\beta x}$.

How to measure risk: Combine utility & distortion

(Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function $c : \mathbb{R} \to \mathbb{R}$ and a distortion map $h : [0, 1] \to [0, 1]$ $\Phi^h_c(X) = c^{-1}(\mathbb{E} c(X^h)).$

Wakker: Rank dependent utilities

Characterized by weaker independence axiom: tradeoff consistency.

Translation invariance holds for all h but imposes $c(x) = e^{\beta x}$. If we also ask for additive consistency then h(s) = s.

Rank dependent utility

How to measure risk: Combine utility & distortion (Allais 1953; Schmeidler 1989; Quiggin 1993; Wakker 1994)

Given a utility function $c : \mathbb{R} \to \mathbb{R}$ and a distortion map $h : [0, 1] \to [0, 1]$ $\Phi_c^h(X) = c^{-1}(\mathbb{E}\,c(X^h)).$

Wakker: Rank dependent utilities

Characterized by weaker independence axiom: tradeoff consistency.

Translation invariance holds for all h but imposes $c(x) = e^{\beta x}$. If we also ask for additive consistency then h(s) = s.

Theorem

The only maps Φ_c^h that are additive consistent are the entropic risk measures Φ_{β}

REMARK: Under smoothness assumptions this result was obtained by Luan'2001, Heilpern'2003, Goovaerts-Kaas-Laeven-Tang'2010

Sketch of Proof

Sketch of Proof

Step 1: From $\Phi_c^h(m + zB_p) = m + \Phi_c^h(zB_p)$ we get c'(0)[c(m+z)-c(m)] = c'(m)[c(z) - c(0)]

as before so that $c(x) = e^{\beta x}$.

Sketch of Proof

Step 1: From $\Phi_c^h(m + zB_p) = m + \Phi_c^h(zB_p)$ we get c'(0)[c(m+z) - c(m)] = c'(m)[c(z) - c(0)]

as before so that $c(x) = e^{\beta x}$.

Step 2: From
$$\Phi_c^h(zB_p + zB_q) = \Phi_c^h(zB_p) + \Phi_c^h(zB_q)$$
 we get

$$h(pq) = h(p)h(q)$$

$$h(p) + h(q) = h(p)h(q) + h(1 - \bar{p}\bar{q})$$

with unique solution h(s) = s.

Computing entropic optimal paths

Let G = (V, A) with all the \tilde{t}_a 's independent. By additive consistency, the risk of the random time $X = \sum_{a \in r} \tilde{t}_a$ of a path r satisfies

$$\Phi_{eta}(X) = \sum_{a \in r} \Phi_{eta}(\widetilde{t}_a).$$

 \Rightarrow optimal paths \equiv shortest paths with lengths $\ell_a = \Phi_{\beta}(\tilde{t}_a)$.

Computing entropic optimal paths

Let G = (V, A) with all the \tilde{t}_a 's independent. By additive consistency, the risk of the random time $X = \sum_{a \in r} \tilde{t}_a$ of a path r satisfies

$$\Phi_{eta}(X) = \sum_{a \in r} \Phi_{eta}(\widetilde{t}_a).$$

 \Rightarrow optimal paths \equiv shortest paths with lengths $\ell_a = \Phi_{\beta}(\tilde{t}_a)$.

COMMENT: Dependent case yields a stochastic dynamic programming recursion solved by conditional expectation

$$\Phi_{\beta}(X+Y) = \Phi_{\beta}(X+\Phi_{\beta}(Y|X)).$$
Routing games with entropic risk averse players

If the distribution $\tilde{t}_a \sim F(v_a)$ depends on the load v_a of link *a* so that $\Phi_\beta(\tilde{t}_a) = g_a(v_a)$ is an increasing function of v_a , then

- non-atomic equilibrium falls into Wardrop's framework
- the atomic case is a special case of Rosenthal's framework

Dynamic risk measures & consistency

Consider a sequence of payoffs $X_t \in \mathcal{Z}_t = L^{\infty}(\Omega, \mathcal{F}_t, \mathbb{P})$ adapted to a filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_T \subset \mathcal{F}$.

Dynamic risk measures & consistency

Consider a sequence of payoffs $X_t \in \mathcal{Z}_t = L^{\infty}(\Omega, \mathcal{F}_t, \mathbb{P})$ adapted to a filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_T \subseteq \mathcal{F}$.

A sequence of **conditional risk measures** $\rho_t : \mathcal{Z}_t \to \mathcal{Z}_{t-1}$ which are

• monotone: $X \leq Y \Rightarrow \rho_t(X) \leq \rho_t(Y)$

• predictable invariant: $\rho_t(X + Y) = \rho_t(X) + Y$ for $Y \in \mathcal{Z}_{t-1}$

Dynamic risk measures & consistency

Consider a sequence of payoffs $X_t \in \mathcal{Z}_t = L^{\infty}(\Omega, \mathcal{F}_t, \mathbb{P})$ adapted to a filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_T \subseteq \mathcal{F}$.

A sequence of **conditional risk measures** $\rho_t : \mathcal{Z}_t \to \mathcal{Z}_{t-1}$ which are

- monotone: $X \leq Y \Rightarrow \rho_t(X) \leq \rho_t(Y)$
- predictable invariant: $\rho_t(X + Y) = \rho_t(X) + Y$ for $Y \in \mathcal{Z}_{t-1}$

is called dynamically consistent if the nested risk transition maps

$$R_t^{\mathcal{T}}(X_t,\ldots,X_{\mathcal{T}}) = \rho_t(X_t + \rho_{t+1}(X_{t+1} + \cdots + \rho_{\mathcal{T}}(X_{\mathcal{T}})))$$

are such that

$$R_t^T(X_t, \dots, X_T) \le R_t^T(Y_t, \dots, Y_T)$$

$$\Downarrow$$

$$R_{t-1}^T(Z, X_t, \dots, X_T) \le R_{t-1}^T(Z, Y_t, \dots, Y_T)$$

Routing stages & recursive AVaR ?

$\rho_1(X + \rho_2(Y)) > \rho_1(Z)$

Routing stages & recursive AVaR ?

 $\rho_1(X+Y) < \rho_1(Z)$

R. Cominetti (UAI – Chile) Equilib

This is the end... !