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Let’s Start with a Recap



Sample Average Approximation

We want to solve the “true” problem

min
x∈X
{g(x) := E[G (x , ξ)]} , (SP)

but it is typically very difficult or impossible to solve.

Generate a sample {ξ1, ξ2, . . . ξN} and solve the Sample Average
Approximation (SAA):

min
x∈X

ĝN(x) :=
1

N

N∑
j=1

G (x , ξj)

 . (SPN)
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Sample Average Approximation

Recall

x∗ := an optimal solution of (SP)

S∗ := the set of optimal solutions of (SP)

ν∗ := the optimal value of (SP)

and

x̂N := an optimal solution of (SPN)

SN := the set of optimal solutions of (SPN)

νN := the optimal value of (SPN)

View (x∗,S∗, ν∗) as “statistical estimators” of (x̂N ,SN , νN)



Sample Average Approximation

So far. . . Standard Monte Carlo: {ξ1, ξ2, . . . ξN} generated
independent and identically distributed (iid) as ξ

And. . . Looked at the properties of statistical estimators

Negative Bias: E [νN ] ≤ ν∗

Strong Consistency: e.g., νN → ν∗, w.p.1.

Rates of Convergence: e.g.,√
N(νN − ν∗) d→ Normal(0, σ(x∗))

Large Deviations; Exponential Rates of Convergence; . . .



Why Variance Reduction?



Why Variance Reduction?

Consider g(x) = E[G (x , ξ)] for a fixed x ∈ X .

Estimate g(x) by ĝN(x) = 1
N

∑N
j=1 G (x , ξj)

For illustration purposes, suppose we provide a Confidence
Interval (CI) on the value of g(x) as[

ĝN(x)− 2
√

Var [ĝN(x)], ĝN(x) + 2
√

Var [ĝN(x)]
]

Suppose we have 2 estimators:

Estimator ĝN(x) Var[ĝN(x)] CI
1 10 25 [0, 20]
2 10 0.25 [9, 11]

Which one is preferable? Clearly. . .
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√

Var [ĝN(x)]
]

Suppose we have 2 estimators:
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Why Variance Reduction?

Suppose we use standard Monte Carlo with iid {ξ1, ξ2, . . . ξN}. In
this case:

Var[ĝN(x)] = Var

 1

N

N∑
j=1

G (x , ξj)

 =
Var[G (x , ξ)]

N
.

So. . . to decrease variance we can increase the sample size N

NOTE: Although Var[G(x , ξ)] is typically unknown, it can be estimated by a
sample variance as follows:

S2
N(x) :=

∑N
j=1[G(x , ξj) − ĝN(x)]2

N − 1
.

The above estimator is unbiased, i.e., E[S2
N(x)] = Var[G(x , ξ)].



Why Variance Reduction?

Suppose we use standard Monte Carlo with iid {ξ1, ξ2, . . . ξN}. In
this case:
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Why Variance Reduction?

However, increasing the sample size is not desirable:

1 Estimation of G (x , ξj) for a fixed x ∈ X could be very
expensive

2 When we also optimize (minx∈X ĝN(x)), computational
burden of optimization can significantly increase with N

WANT: decrease variance without increasing sample size

- A well studied topic in statistics and simulation

- When we optimize minx∈X ĝN(x), variance reduction can be more
important

- Poor estimates of objective and/or gradients can slow down the
convergence of Monte Carlo simulation-based methods
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Variance Reduction Techniques

We will discuss:

Antithetic Variates

Latin Hypercube Sampling

Quasi-Monte Carlo (QMC) and Randomized QMC

Importance Sampling

Control Variates



Variance Reduction Techniques

We will:

Introduce these techniques in the context of estimating
G (x , ξ) for a fixed x ∈ X

Point to literature that uses them for stochastic optimization

Discuss the properties of resulting statistical esimators when
used in the context of stochastic optimization



Variance Reduction Techniques: Common Themes

Some common themes to reduce variance:

1 Exploitation of Correlations

2 Sampling more “uniformly” than random sampling (or
“filling in the space better”)

3 Concentrating the sampling to important regions



Antithetic Variates (AV)



Antithetic Variates

Idea: use pairs of negatively correlated random variables to reduce
variance

Suppose N is even and components of ξ are independent:

1 Sample observations {U1, . . . ,U
N
2 } from a U(0, 1)dξ

distribution.

2 Calculate the antithetic pairs

{U1′ , . . . ,U
N
2

′
} = {1− U1, . . . , 1− U

N
2 }.

3 Apply the inverse cumulative distribution function to obtain N

observations {ξ1, ξ1′ , ξ2, ξ2
′
. . . , ξ

N
2 , ξ

N
2

′
}.
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Antithetic Variates

AV estimator of E[G (x , ξ)] is:

ĝN,AV(x) =
1

N/2

N/2∑
j=1

G (x , ξj) + G (x , ξj
′
)

2

Unbiased: E [ĝN,AV(x)] = E [G (x , ξ)]

Has variance:

Var [ĝN,AV(x)] =
Var [G (x , ξ)]

N︸ ︷︷ ︸
Var of Standard MC!

+
1

N
Cov

[
G (x , ξj),G (x , ξj

′
)
]

︸ ︷︷ ︸
If Cov< 0, AV reduces var!
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AV: Amount of Variance Reduction

The amount of variance reduction depends on how much negative
correlation between U and U

′
is preserved when:

(i) Transforming to ξ and ξ
′

(ii) Applying G (x , ·)

It is well known that G (x , ·) preserves negative correlation when:

(i) G (x , ·) is bounded and monotone in each component of ξ

(ii) G (x , ·) is not constant in the interior of Ξ
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AV: Amount of Variance Reduction

When do we have monotononicity?

Example: Two-stage stochastic linear programs with recourse

min
x

E [G (x , ξ)] = E [cx + h(x , ξ)]

s.t. Ax = b, x ≥ 0,

where h(x , ξ) is the optimal value of the linear program

h(x , ξ) = min
y

q̃y

s.t. Wy ≥ r̃ − Tx , y ≥ 0.

Here, ξ is a random vector that is comprised of random elements

of q̃, r̃ .
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AV: Amount of Variance Reduction

Example Cont’d: Two-Stage Stochastic Linear Programs are
Monotone when:

- The recourse matrix W is fixed

- The recourse decision vector y is non-negative

- Constraints are defined using inequalities

- The components of ξ̃ are independent

Be careful! AV can backfire

? shows when monotonicity is lost, AV can increase variance
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Guzin Bayraksan
Sticky Note
Koivu (2005)  
Please see "Additional References" slide



AV: In the Context of Optimization

When used for optimization:

? analytically show the extent of variance reduction using AV
on a newsvendor problem

Decreases bias of νN (E [νN ] ≤ ν∗)
Can increase or decrease variance depending on parameters

When AV is effective, ? uses it with other variance reduction
techniques (QMC)

Several studies show modest variance and bias reduction for
most two-stage stochastic linear problems (??)

Guzin Bayraksan
Sticky Note
Freimer, Linderoth, and Thomas (2012)

Please see "Additional References" slide
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Latin Hypercube Sampling (LHS)



Latin Hypercube Sampling

Idea: use statified sampling but in a less computationally intensive
way

Suppose components of ξ are independent:

1 For each component of ξ̃:

1.1 Sample observations U i ∼ U( i−1
N , i

N ) for i = 1, . . . ,N.

1.2 Randomly permute these N observations.

2 Apply the inverse cumulative distribution function to obtain
{ξ1, . . . , ξN}.



Latin Hypercube Sampling

Idea: use statified sampling but in a less computationally intensive
way

Example: Dimension dξ = 2 and sample size N = 4

324 8 Beyond Numerical Integration

00 1 1

1 1

Fig. 8.9 Stratified design with no permutations (left) and with permutation π2 = [4231]

as in LHS (right).

We will be using this matrix A to describe a generalization of LHS based on
orthogonal arrays, as discussed in [356]. This matrix will also be convenient
to explain methods that are used for sensitivity analysis. In addition, this
description is helpful for handling slightly more general setups than the one
chosen here, where we assumed each factor had been rescaled to the interval
[0, 1]. Sometimes authors prefer to work with real-valued factors X1, . . . , Xd

assumed to be independent and each having a marginal pdf ϕj(x) for j =
1, . . . , d. In that context, the choice of design is usually done in two steps: (1)
produce a set of n vectors

{(xi,1, . . . , xi,d), i = 1, . . . , n}

according to some sampling method, where xi,j is distributed according to

ϕj for each i = 1, . . . , n, and each j = 1, . . . , d; and (2) use a sampling plan
A, possibly modified with permutations, in order to define the design

{(xA[i,1],1, . . . , xA[i,d],d), i = 1, . . . , n}.

(Here we use the notation A[i, j] instead of Ai,j to avoid double subscripts.)

This more general framework can, however, be converted to the previous
one, where the goal is to construct a good design over [0, 1]d. Example 8.8
illustrates this idea, which refers back to the integration versus simulation
formulation discussed throughout this book.

Example 8.8. Suppose d = 2, and X1, X2 are assumed to be independent and
exponentially distributed random variables with mean β. Using inversion, we
can obtain such variables using

X = −β ln(1 − U).

(a) Stratified

(Images: ?)

Guzin Bayraksan
Sticky Note
Lemieux (2009) 
Please see "Additional References" slide
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Properties of LHS

Each G (x , ξjL) is unbiased: E
[
G (x , ξjL)

]
= E [G (x , ξ)]

However, G (x , ξjL), j = 1, 2 . . .N are not independent!

LHS estimator

ĝN,LHS(x) =
1

N

N∑
j=1

G (x , ξjL)

is unbiased: E [ĝN,LHS(x)] = E [G (x , ξ)]

If G (x , ·) then Var [ĝN,LHS(x)] ≤ Var [ĝN(x)]

More generally

Var [ĝN,LHS(x)] ≤ N

N − 1
Var [ĝN(x)]
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ĝN,LHS(x) =
1

N

N∑
j=1

G (x , ξjL)
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LHS: In the Context of Optimization

When used for optimization:

? analytically show the extent of variance reduction using
LHS on a newsvendor problem

Completely removes bias of νN (E [νN ] = ν∗)

Decreases variance considerably

Many studies show LHS effectively reduces variance and bias
for several classes of stochastic programs; e.g., (????)

Guzin Bayraksan
Sticky Note
Freimer, Linderoth, and Thomas (2012)

Please see "Additional References" slide
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Quasi-Monte Carlo (QMC) and

Randomized Quasi-Monte Carlo (RQMC)



Quasi-Monte Carlo

Idea: use a low-discrepancy sequence to sample more uniformly.
The sequence doesn’t have to be independent or random.

146 5 Quasi–Monte Carlo Constructions

sets are constructed with a prefixed cardinality. We will come back to this
“space-filling” property in Sect. 5.4.

We give in Fig. 5.3 (bottom right) an example of a digital net based on
the Sobol’ sequence [415]. Just like for the lattice shown on the left of this
point set, here we have 64 points that all map to a different coordinate of the
form i/64 for i = 0, . . . , 63. The uniformity of this point set does not show
up as a lattice structure, but one definitely observes a deterministic pattern
when looking at this point set. As we will see in Sect. 5.4, the uniformity is
instead measured using the concept of equidistribution.

5.3 Lattices

In Fig. 5.3 (bottom left), we depicted a two-dimensional example of a Korobov
point set and briefly described that construction. The more general class to
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Fig. 5.3 Four different point sets with n = 64: random (top left), rectangular grid (top

right), Korobov lattice (bottom left), and Sobol’ (bottom right).

(a) Random Sequence

146 5 Quasi–Monte Carlo Constructions

sets are constructed with a prefixed cardinality. We will come back to this
“space-filling” property in Sect. 5.4.

We give in Fig. 5.3 (bottom right) an example of a digital net based on
the Sobol’ sequence [415]. Just like for the lattice shown on the left of this
point set, here we have 64 points that all map to a different coordinate of the
form i/64 for i = 0, . . . , 63. The uniformity of this point set does not show
up as a lattice structure, but one definitely observes a deterministic pattern
when looking at this point set. As we will see in Sect. 5.4, the uniformity is
instead measured using the concept of equidistribution.

5.3 Lattices

In Fig. 5.3 (bottom left), we depicted a two-dimensional example of a Korobov
point set and briefly described that construction. The more general class to
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Fig. 5.3 Four different point sets with n = 64: random (top left), rectangular grid (top
right), Korobov lattice (bottom left), and Sobol’ (bottom right).

(b) Sobol’ Sequence

(Images: Lemieux (2009))



Quasi-Monte Carlo

Idea: use a low-discrepancy sequence to sample more uniformly.
The sequence doesn’t have to be independent or random.

(c) (0,3,2)-net in base b=3

(Image: Homem-de-Mello and Bayraksan (2014))



Quasi-Monte Carlo

Many different ways to generate these sequences:

Sobol’

Niederreiter

Lattice rules

Digital nets and sequences

. . .

For simplicity, we will assume ξ is a random vector with
independent components, each with uniform distribution over [0, 1]



Quasi-Monte Carlo

How to measure the quality (or “uniformity”) of these sequences?

Star Discrepancy

- Consider a dξ dimensional unit cube [0, 1)dξ

- A point set P = {ξj}∞j=1 inside [0, 1)dξ

- PN denotes the first N points from the point set P

- Consider hyper-rectangles with a corner at the origin

B(v) = Π
dξ
i=1[0, vi ]

where v is a vector (v1 v2 . . . vdξ)
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Star Discrepancy

Star Discrepancy is the Kolmogorov-Smirnov distance between the
point set and the uniform distribution over the unit cube:

D∗(PN) := sup
v∈[0,1)

dξ

∣∣∣∣Number of ξj ∈ B(v)

N
− Π

dξ
i=1vi

∣∣∣∣



Discrepancy

Example (Lemieux, 2009):

v1 = 0.4, v2 = 0.7 and 6/23 points inside the box, gives a
discrepancy of |6/23− 0.4× 0.7| = 0.019



What About Star Discrepancy?

Conjecture that for deterministic sequences, the best that can

be achieved is D∗(PN) ∈ O

(
(log N)

dξ

N

)

Sequences that achieve this bound are known and called
low-discrepancy sequences

Koksma-Hlawka inequality gives a bound on the error

|ĝN,QMC(x)− g(x)| ≤ D∗(PN)V (G (x , ·))

where V (G (x , ·)) is the total variation in the sense of Hardy

and Krause
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Low-Discrepancy Sequences

So if V (G (x , ·)) <∞ and we use a low-discrepancy sequence

|ĝN,QMC(x)− g(x)| ∈ O

(
(logN)dξ

N

)

Compare with Standard Monte Carlo error bound: O
(

1√
N

)
Observations:

- MC error bound is free of dimension

- If N is large and dξ is small, then, QMC is expected to give a
better approximation

- For large dξ, QMC can backfire! (esp. with low N)

- One way to deal with this is to find the “effective” dimension
of the problem and use LHS or Standard MC on the other
dimensions; e.g., (Drew and Homem-de-Mello, 2006; Drew,
2007)
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Randomized Quasi-Monte Carlo

Koksma-Hlawka inequality is difficult to compute, is only a bound;
so, how to know the errors?

→ Include randomness to estimate errors

We want the randomization to be performed so that

(i) Each point follows Uniform distribution over the unit cube

(ii) Low discrepancy is preserved

Many different ways to do randomization

Random shift

Digital shift (for digital nets)

Scrambling and Permutations, . . .
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RQMC: Cranley Patterson Random Shift

Generate a random vector u ∼ U([0.1)dξ)

Let
ξ̃j = (ξj + u) mod 1
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RQMC: Estimation of Error

Generate m iid RQMC sequences P̃N

ĝ l
N,RQMC(x) =

1

N

N∑
j=1

G (x , ξ̃j), l = 1, 2, . . .m

and use the estimator

ĝN,RQMC(x) =
1

m

m∑
l=1

ĝ l
N,RQMC(x)

This estimator is unbiased: E [ĝN,RQMC(x)] = g(x)

And the error can be estimated through the variance

1

m − 1

m∑
l=1

(
ĝ l
N,RQMC(x)− ĝN,RQMC(x)

)2
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Importance Sampling (IS)



Importance Sampling: Motivation

Idea: Concentrate samples to most important areas. Especially
can be useful for “rare” events.

CVaR1−α[G (x , ξ)] = min
η

{
η +

1

α
E [(G (x , ξ)− η)+]

}

If α = 0.05, 95% of the standard Monte Carlo samples do not
contribute to positive values in this expectation!



IS: How does it work?

For simplicity, suppose ξ has density f . Then,

g(x) = E[G (x , ξ)] =

∫
Ξ
G (x , ξ)f (ξ)dξ

Now consider another density q over Ξ such that q(E ) = 0 for
every set E for which f (E ) = 0 and rewrite

E[G (x , ξ)] =

∫
Ξ
G (x , ξ)dξ

Here, L(ξ) = f (ξ)
q(ξ) is the likelihood ratio, which we assume is well

defined
(for this, we may set L to zero whenever both f and q are zero).



IS: How does it work?

For simplicity, suppose ξ has density f . Then,

g(x) = E[G (x , ξ)] =

∫
Ξ
G (x , ξ)f (ξ)dξ

Now consider another density q over Ξ such that q(E ) = 0 for
every set E for which f (E ) = 0 and rewrite

E[G (x , ξ)] =

∫
Ξ
G (x , ξ)L(ξ)q(ξ)dξ

Here, L(ξ) = f (ξ)
q(ξ) is the likelihood ratio, which we assume is well

defined
(for this, we may set L to zero whenever both f and q are zero).



IS: How does it work?

For simplicity, suppose ξ has density f . Then,

g(x) = E[G (x , ξ)] =

∫
Ξ
G (x , ξ)f (ξ)dξ

Now consider another density q over Ξ such that q(E ) = 0 for
every set E for which f (E ) = 0 and rewrite

E[G (x , ξ)] =

∫
Ξ
G (x , ξ)L(ξ)q(ξ)dξ

Here, L(ξ) = f (ξ)
q(ξ) is the likelihood ratio, which we assume is well

defined
(for this, we may set L to zero whenever both f and q are zero).



IS: How does it work?

For simplicity, suppose ξ has density f . Then,

g(x) = E[G (x , ξ)] =

∫
Ξ
G (x , ξ)f (ξ)dξ

Now consider another density q over Ξ such that q(E ) = 0 for
every set E for which f (E ) = 0 and rewrite

E[G (x , ξ)] =

∫
Ξ
G (x , ξ)L(ξ)q(ξ)dξ

Here, L(ξ) = f (ξ)
q(ξ) is the likelihood ratio, which we assume is well

defined
(for this, we may set L to zero whenever both f and q are zero).



IS: How does it work?

Standard MC: iid sample {ξ1, ξ2, . . . , ξN} from density f

Importance Sampling: iid sample {ξ̃1
q, ξ̃

2
q, . . . , ξ̃

N
q } from density q

The importance sampling estimator:

ĝN,IS(x) =
1

N

N∑
j=1

G (x , ξ̃jq)L(ξ̃jq)

Unbiased: E [ĝN,IS(x)] = g(x)
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Variance of the IS Estimator

How to obtain q?

→ To reduce variance! To understand this better, let’s take a look
at the variance of the IS estimator.

Consider the following facts:

E[G (x , ξ̃q)L(ξ̃q)] = E[G (x , ξ)]

E[G 2(x , ξ̃q)L2(ξ̃q)] = E[G 2(x , ξ)L(ξ)]

Therefore, the variance of the IS estimator is

Var [ĝN,IS(x)] =
1

N

[
E[G 2(x , ξ)L(ξ)]− (E[G (x , ξ)])2

]
,

→ Reduce Variance when E[G 2(x , ξ)L(ξ)] < E[G 2(x , ξ)]
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How to obtain IS distribution?

When G (x , ·) ≥ 0, setting Var [ĝN,IS(x)] = 0 results in the optimal
zero-variance density

q∗(ξ) =
f (ξ)G (x , ξ)

E[G (x , ξ)]

Too good to be true?

Nevertheless, select q

q(ξ) ∝ f (ξ)G (x , ξ)

to achieve variance reduction even though the proportionality
constant may not be known
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zero-variance density

q∗(ξ) =
f (ξ)G (x , ξ)

E[G (x , ξ)]
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How to obtain IS distribution?

BE Careful! If q is not chosen properly, IS can backfire! Can
actually increase the variance!

Also q should be easy to sample from

Many different ways to obtain the IS distribution

Exponential Tilting

Using Large Deviations

Nonparametric methods, . . .

Exploit the problem structure

Still an open area of research
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IS: Examples of Use in Optimization

Kozḿık and Morton (2015) apply IS to solve multistage stochastic
programs with Mean-CVaR objectives. Here is a ‘gist’:

Suppose ξ has a finite support, taking |Ξ| realizations

The ‘nominal’ distribution puts equal mass on each point.
The nominal probability mass function (pmf) is: f (ξ) = 1

|Ξ|

Instead of the expensive evaluations G (x , ξ), suppose there is
a good approximation function H(x , ξ) that:

- estimates the value of G (x , ξ) cheaply and
- orders the values G (x , ξ) in the same way
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IS: Examples of Use in Optimization

Suppose at a given x , the Value at Risk at level 1− α of the
approximation function is obtained → Let’s denote it VH

The ‘IS’ pmf is

g(ξ) =

{
1
2

1
bα|Ξ|c , ξ : H(x , ξ) ≥ VH

1
2

1
|Ξ|−bα|Ξ|c , ξ : H(x , ξ) < VH

NOTE: The IS distribution depends on x
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IS: Examples of Use in Optimization

Barrera et al. (2016) apply IS to a chance constrained
problem with rare probabilities.

They show consistency of the SAA problem formed using IS
(optimal values converge, etc.)

They make two important improvements:

- The IS distribution typically depends on ξ. They enhance it to
depend on x as well.

- Find an IS distribution that works for a set of x

Adapted IS yields significantly better results, but the resulting
problem can get difficult to solve



IS: Examples of Use in Optimization

Barrera et al. (2016) apply IS to a chance constrained
problem with rare probabilities.

They show consistency of the SAA problem formed using IS
(optimal values converge, etc.)

They make two important improvements:

- The IS distribution typically depends on ξ. They enhance it to
depend on x as well.

Think of Lx(ξ) instead of L(ξ)
- Find an IS distribution that works for a set of x

Adapted IS yields significantly better results, but the resulting
problem can get difficult to solve



Control Variates (CV)



Control Variates

Idea: reduce variance by inducing correlations

Let C be a control variable with

- E[C ] = 0

- C is correlated with G (x , ξ) —can be positively or negatively
correlated

With λ a scalar, the control variate estimator of E[G (x , ξ)] is given
by

ĝN,CV(x) =
1

N

N∑
j=1

(
G (x , ξj) + λC j

)
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Control Variates

The CV estimator (for a given λ):

Unbiased: E [ĝN,CV(x)] = g(x)

Has variance:

Var [ĝN,CV(x)] =
1

N

(
σ2(x) + λ2Var[C ] + 2λCov[G (x , ξ),C ]

)
where σ2(x) = Var [G (x , ξ)]

We can minimize this variance by setting λ to

λ∗ =
−Cov[G (x , ξ),C ]

Var[C ]
.
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CV: Role of λ

Plug λ∗ back in:

Var[ĝ∗N,CV(x)] =
1

N

(
σ2(x)− Cov2[G (x , ξ),C ]

Var[C ]

)

If C and G (x , ξ) are correlated, the variance of the CV estimator is
less than the variance of the standard MC estimator
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CV: Role of λ

A caveat: Even though Var[C ] may be known, Cov[G (x , ξ),C ]
is unknown

Can be estimated, but when an estimator of λ∗ is used:

ĝN,CV(x) No longer unbiased

Can still yield significant variance reduction

Obeys a Central Limit Theorem (CLT) of the form (Nelson,
1990)

√
N (ĝN,CV(x)− E[G (x , ξ)])

d→ Normal(0,Var[ĝ∗N,CV(x)])
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N (ĝN,CV(x)− E[G (x , ξ)])

d→ Normal(0,Var[ĝ∗N,CV(x)])



CV: Use in Optimization

Use in Optimization: Only for a fixed x ∈ X to estimate
E [G (x , ξ)] or its subgradients, etc.

Example (Pierre-Louis et al., 2011): Consider two-stage
stochastic programs of the form:

min
x∈X

{g(x) := c(x) + E[Q(x , ξ)]},

where
Q(x , ξ) = min

y≥0
q(y)

s.t. g(y) ≤ h(ξ)− T (x , ξ).
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CV: Example Use in Optimization

Assume:

(A1) Q(x , ·) is convex on co(Ξ) for all x ∈ X ;

(A2) ξ has independent components, and h(·) and T (x , ·) are
affine on Rdξ for all x ∈ X .

This class of problems could be:

Two-Stage Stochastic Linear Program

Two-Stage Stochastic Convex Program

X can have integrality restrictions, leading to a Stochastic
Integer Program
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CV: Example Use in Optimization

Use the first-order Taylor approximation of Q(x , ·) as the control
random variable

C (x , ξ) = Q(x , ξ̄) +∇ξQ(x , ξ̄)(ξ − ξ̄)

where ξ̄ = E [ξ]



To Sum Up. . .



Recap of Variance Reduction Techniques We Discussed

Some change the way we Sample:

Antithetic Variates

Latin Hypercube Sampling

Quasi-Monte Carlo (deterministic!)

Randomized Quasi-Monte Carlo

Importance Sampling

Some applied typically for a fixed x and exploits problem structure:

Importance Sampling

Control Variates



Recap of Variance Reduction Techniques We Discussed

Some can backfire if not used properly:

Antithetic Variates (if cannot induce negative correlation)

Randomized Quasi-Monte Carlo (for high dimensions)

Importance Sampling (if IS distribution not selected properly)

Can significantly improve the performance of SAA if used well (and
sometimes with minimal effort)



How about properties of SAA with variance
reduction?



Bias of νN

Bias of νN : Let ξ1, ξ2, . . . , ξN satisfy

E

 1

N

N∑
j=1

G (x , ξj)

 = E [G (x , ξ)] , ∀x ∈ X

Then, E [νN ] ≤ z∗.

Unbiasedness condition above is satisfied by many variance
reduction techniques we discussed: AV (with adjustments to
estimator), LHS, RQMC, IS, CV (under certain conditions)

For AV, LHS, and RQMC Bias reduction have been observed.
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Strong Consistency of νN and x̂N

Strong Consistency of Resulting Estimators: For many of these
Variance Reduction Techniques (VRT), under appropriate
conditions:

νN → ν∗, wp1

dist(SN ,S
∗)→ 0, wp1

AV: Because AV pairs (ξj , ξj
′
) are iid, results typically follow

from iid case with modifications to notation

LHS: Might require additional conditions. For instance,
pointwise Strong Law of Large Numbers (SLLN) requires:

E
[
(G (x , ξ))2

]
<∞

Conditions under which consistency results hold are discussed
in, e.g., (Drew, 2007; Stockbridge, 2013).
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Strong Consistency of νN and x̂N

RQMC: One condition that is needed is that the star
discrepancy of QMC sequence shrinks to zero

D∗(PN)↘ 0

as N ↗∞. Then, through epi-convergence and under
additional assumptions, consistency results are shown (Koivu,
2005)

QMC: Similar results through epi-convergence have been
shown for QMC discretization, e.g, (Pennanen and Koivu,
2005)



Rates of Convergence

Rates of Convergence of Optimal Values: can be obtained for
a class of problems that satisfy (Homem-de-Mello, 2008):

Assumption PLF

Suppose either

(i) X is convex and compact polyhedron

(ii) G (·, ξ) is convex and piecewise linear

(iii) ξ has finite support

or X is finite.



Rates of Convergence

Suppose assumption PLF holds and the “true” problem has a
unique optimal solution x∗.

Suppose CLT holds pointwise for estimators ĝN(x), esp. at x∗:

ĝN(x∗)− g(x∗)

σN(x∗)
d→ Normal(0, 1)

where σN(x∗) = Var [ĝN(x∗)].

Then, optimal values also obey a CLT:

νN − ν∗

σN(x∗)
d→ Normal(0, 1)
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Rates of Convergence

Standard MC: We have seen earlier that the rate of
convergence is O(N−1/2)

AV: Also by iid case above, O(N−1/2)

LHS: Pointwise CLT for LHS holds when G is bounded

sup
x∈X ,ξ∈Ξ

|G (x , ξ)| < M for some 0 < M <∞

and G (x∗, ·) is not additive.

Then, rate of convergence is same as standard MC: O(N−1/2)
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Rates of Convergence

RQMC: For a RQMC where pointwise CLT holds, rate of
convergence is

O

[(logN)dξ−1

N3

] 1
2


This rate is asymptotically better than standard MC.



Rates of Convergence

Rates of Convergence of Optimal Solutions: have similar
properties (Homem-de-Mello, 2008).

For simplicity, let’s assume assumption PLF holds.

If exponential rate of convergence holds pointwise

P(|ĝN(x)− g(x)| ≥ δ) ≤ Cxe
−Nγx (δ), ∀x ∈ X

for all N ≥ 1 and δ > 0 with some constant Cx > 0 and function
γx(·) such that γx(0) = 0 and γx(z) > 0 if z > 0
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P(|ĝN(x)− g(x)| ≥ δ) ≤ Cxe
−Nγx (δ), ∀x ∈ X

for all N ≥ 1 and δ > 0 with some constant Cx > 0 and function
γx(·) such that γx(0) = 0 and γx(z) > 0 if z > 0



Rates of Convergence

Then,
P(x̂N /∈ S∗) ≤ Ke−αN for all N ≥ 1

for some constants K > 0 and α > 0

LHS: Pointwise large deviations results (i.e., exponential rates of
convergence) holds, for instance, when G (x , ·) is monotone in each
component of ξ
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P(x̂N /∈ S∗) ≤ Ke−αN for all N ≥ 1

for some constants K > 0 and α > 0

LHS: Pointwise large deviations results (i.e., exponential rates of
convergence) holds, for instance, when G (x , ·) is monotone in each
component of ξ



Some Final Remarks



Final Remarks

Variance Reduction can be very important for optimization
because it can significantly improve the statistical estimators

Many asymptotic (and other) properties of SAA can be
recovered when variance reduction techniques are used
(sometimes, though, under more stringent conditions)

If not used properly, some techniques may backfire

Still more to do with respect to algorithmic (optimization
wise) and application-based advances



Thank you

(bayraksan.1@osu.edu)
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