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Recap: Asymptotic properties of SAA

The SAA approach

Recap: we were studying what happens when we approximate the problem

min
x∈X
{g(x) := E[G (x , ξ)]} (SP)

by

min
x∈X

ĝN(x) :=
1

N

N∑
j=1

G (x , ξj)

 . (SPN)

This is called the Sample Average Approximation (SAA) approach.
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Recap: Asymptotic properties of SAA

Asymptotic properties of SAA

Let

x̂N := an optimal solution of (SPN)

SN := the set of optimal solutions of (SPN)

νN := the optimal value of (SPN)

and

x∗ := an optimal solution of (SP)

S∗ := the set of optimal solutions of (SP)

ν∗ := the optimal value of (SP)

As the sample size N goes to infinity, does

x̂N converge to some x∗?

SN converge to the set S∗?

νN converge to ν∗?
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Problems with stochastic constraints

Problems with stochastic constraints

So far our analysis has focused on the problem

min
x∈X
{g(x) := E[G (x , ξ)]} (SP)

which has a deterministic feasibility set X , say, X = {x : hi (x) ≤ 0},
i = 1, . . . ,m.

Issue: What if we have stochastic constraints? How to model the
problem?

We will consider two classes of problems:

1 X has the form E[Hi (x , ξ)] ≤ 0, i = 1, . . . ,m.

2 X has the form P(Hi (x , ξ) ≤ 0) ≥ 1− α, i = 1, . . . ,m
(or, equivalently, p(x) := P(Hi (x , ξ) > 0) ≤ α).
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Problems with stochastic constraints Problems with expectation constraints

Problems with expectation constraints

Let us consider the case where the stochastic constraint is E[H(x , ξ)] ≤ 0.

A natural approach is use SAA and replace the constraint with

1

N

N∑
j=1

H(x , ξj) ≤ 0.

Does that work?

Let us consider a simple example where the objective function is
g(x) = x , and the constraint function is H(x , ξ) = ξ − x where ξ has
distribution Normal(0, σ), i.e., the constraint is x ≥ 0 = E[ξ].

The SAA of this constraint is

x ≥ 1

N

N∑
j=1

ξj .

so the SAA solution is x̂N = 1
N

∑N
j=1 ξ

j .
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Problems with stochastic constraints Problems with expectation constraints

Problems with expectation constraints

Note that 1
N

∑N
j=1 ξ

j has distribution Normal(0, σ/
√

N).

So, there is a 50% chance that the solution x̂N will be infeasible for the
original problem!

Idea: Perturb the feasibility set, writing it as
Uε := {x ∈ X : E[H(x , ξ)] ≤ ε}.

When ε > 0 we have a relaxation of the original problem.

When ε < 0 we have a tightening of the original problem.
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Problems with stochastic constraints Problems with expectation constraints

Problems with expectation constraints

Now let U0
N denote the feasibility region if the SAA problem, i.e.,

U0
N =

x ∈ X :
1

N

N∑
j=1

H(x , ξj) ≤ 0

 .

Theorem

When X is compact, the function H(·, ξ) is Lipschitz and H(x , ·) has finite
moment generating function, there exist constants M and β > 0 such that

P
(
U−ε ⊆ U0

N ⊆ Uε
)
≥ 1−Me−βε

2N .
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Problems with stochastic constraints Problems with expectation constraints

Application: Problems with CVaR constraints

Given a random variable Z , the conditional value-at-risk (CVaR) of Z is
defined as

CVaR1−α[Z ] =
1

α

∫ 1

1−α
VaRγ [Z ] dγ

where
VaRγ [Z ] := min{t | P(Z ≤ t) ≥ γ}.

It is well known that the CVaR can be written as

CVaR1−α[Z ] = min
η∈R

{
η +

1

α
E [(Z − η)+]

}
,

where (a)+ := max(a, 0).

Also, the optimal solution η∗ of this problem is VaR1−α[Z ]!
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Problems with stochastic constraints Problems with expectation constraints

Connection with CVaR constraints

Note also that, when Z has continuous distribution, we have

E [Z |Z > VaR1−α[Z ]] = E [VaR1−α[Z ] + (Z − VaR1−α[Z ]) |Z > VaR1−α[Z ]]

= VaR1−α[Z ] +
E
[
(Z − VaR1−α[Z ])+

]
P(Z > VaR1−α[Z ])

= η∗ +
1

α
E
[
(Z − η∗)+

]
= min

η∈R

{
η +

1

α
E [(Z − η)+]

}
= CVaR1−α[Z ].

In particular, this implies that CVaR1−α[Z ] ≥ VaR1−α[Z ].
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Problems with stochastic constraints Problems with expectation constraints

Application: Problems with CVaR constraints

Consider now the problem

min
x∈X

g(x)

s.t. CVaR1−α[F (x , ξ)] ≤ a.

Then, by using the optimization representation of CVaR we can write the
problem as

min
x∈X ,η∈R

g(x)

s.t. η +
1

α
E
[
(F (x , ξ)− η)+

]
≤ a,

which falls into the standard formulation by defining
H((x , η), ξ) := η + 1

α (F (x , ξ)− η)+ − a.
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Problems with stochastic constraints Chance-constrained problems

Chance-constrained problems

Chance constraints can be very helpful in modeling some situations.

This is true especially when what matters is whether or not a constraint
was violated, not the amount of violation. For example,

Reliability problems

Problems with physical constraints

Also, it is often easier to choose the chance constraint level than to
choose, say, penalties for violation.
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Problems with stochastic constraints Chance-constrained problems

Example: a telecommunication problem

Network:	G=(V,A)

Commodities:					,	each	one	
with	possible demand	dc to	be	
routed	from	sc to	tc

Capacities:	 for	each	link	
(need	to	be	integral)
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Problems with stochastic constraints Chance-constrained problems

Example: a telecommunication problem

Network:	G=(V,A)

Commodities:					,	each	one	
with	possible demand	dc to	be	
routed	from	sc to	tc

Capacities:						 for	each	link	
(need	to	be	integral)

Problem:	To	route each	commodity	and	define	
capacities for	each	link	that	minimize	the	capacity	
installation	cost,	subject	to	a	reliability constraint
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Problems with stochastic constraints Chance-constrained problems

Modeling the problem

Each connection c communicates with probability ρc
(ξc ∼ Bernoulli(ρc))

We need to determine the minimum capacity w` for each link ` that
will meet communication requirements with probability at least 1−α`.

The routing variables xc
` are equal to one if connection c uses link `,

zero otherwise
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Problems with stochastic constraints Chance-constrained problems

A chance-constrained formulation

min
x ,w

∑
`∈L

w`

s.t.∑
`∈δ+(sc )

xc
` −

∑
`∈δ−(sc )

xc
` = −1 ∀c ∈ C

∑
`∈δ+(tc )

xc
` −

∑
`∈δ−(tc )

xc
` = 1 ∀c ∈ C

∑
`∈δ+(n)

xc
` −

∑
`∈δ−(n)

xc
` = 0 ∀c ∈ C, ∀n 6= sc , tc

P

(∑
c∈C

ξcxc
` ≤ w`

)
≥ 1− α` ∀` ∈ L.
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Problems with stochastic constraints Chance-constrained problems

Feasible regions: an example

min
x∈R2

c1x1 + c2x2

s.t. P(ξx1 + x2 ≥ 7) ≥ 1− α

Assuming ξ ∼ U[0, 1], draw the feasible region C (α) for α = 0.3 and
α = 0.7.
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Problems with stochastic constraints Chance-constrained problems

Solution

If ξ ∼ U[0, 1] then the feasible set is
C (α) = C+(α)

⋃
C0(α)

⋃
C−(α), α ∈ (0, 1), where

C+(α) =
{

x ∈ R2 | x1 > 0, αx1 + x2 ≥ 7
}
,

C0(α) =
{

(0, x2) ∈ R2 | x2 ≥ 7
}
,

C−(α) =
{

x ∈ R2 | x1 < 0, (1− α)x1 + x2 ≥ 7
}
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Problems with stochastic constraints Chance-constrained problems

Feasible regions
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Problems with stochastic constraints Convexification of chance constraints

Connection with CVaR constraints

Consider the chance constraint

P(F (x , ξ) ≤ 0) ≥ 1− α.

Note that this is equivalent to

VaR1−α[F (x , ξ)] ≤ 0.

Recall that we saw earlier that CVaR1−α[Z ] ≥ VaR1−α[Z ].

Therefore, if we replace the chance constraint P(F (x , ξ) ≤ 0) ≥ 1−α
with CVaR1−α[F (x , ξ)] ≤ 0, we have a conservative approximation.

The advantage of such an approximation is that the feasibility set is
convex if F (·, ξ) is convex.
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Problems with stochastic constraints Sampling approaches for chance constraints

Sampling approaches

Non-convexity of chance-constraints does not occur when the
distribution of ξ belongs to a certain class (called log-concave
distributions).

But what to do if the random parameters do not follow a tractable
distribution?

One alternative is to apply the SAA approach, which replaces the
chance constraint by its sample average.

The resulting problem is easier to solve, and provides useful
information to the true problem.
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Problems with stochastic constraints Sampling approaches for chance constraints

SAA

Let ξ1, . . . , ξN be a random sample from ξ.

Using that P(ξ ∈ A) = E[IA (ξ)], the SAA of a chance constrained
problem is

min
x∈X

g(x)

s.t. pN(x) :=
1

N

N∑
j=1

I(0,∞)

(
H(x , ξj)

)
≤ γ

(Compare with the original problem:)

min
x∈X

g(x)

s.t. p(x) := P(H(x , ξ) > 0) ≤ α
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Problems with stochastic constraints Sampling approaches for chance constraints

The scenario approach

Note that if we take γ = 0 in the above formulation we obtain

min
x∈X

g(x)

s.t. H(x , ξj) ≤ 0, j = 1, . . . ,N.

If each function H(·, ξ) is convex and g is convex, then the above problem
is convex.

This is called the scenario approach.

What is the relationship to the original problem?
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Problems with stochastic constraints Sampling approaches for chance constraints

The scenario approach

Theorem

Select a confidence parameter β ∈ (0, 1), and let dx denote the dimension
of x. Suppose that H(·, ξ) is convex. If

N ≥ 2

α

(
ln

1

β
+ dx

)
,

then, with probability at least 1− β we have that x̂N satisfy all constraints
in the original problem but at most a fraction α, that is,

P (H(x̂N , ξ) > 0) ≤ α,

regardless of the distribution of ξ.
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Problems with stochastic constraints Sampling approaches for chance constraints

An equivalent IP formulation

Consider now the case of γ > 0.

Given a sample of size N, we can write the problem as

min
x∈X

g(x)

s.t. H(x , ξ̂i )−Mzi ≤ 0 i = 1, . . . ,N, (P)

1

N

N∑
i=1

zi ≤ γ,

zi ∈ {0, 1}N .

That is, we obtain an IP formulation, which is particularly helpful
when H is linear in x .
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Problems with stochastic constraints Sampling approaches for chance constraints

Feasibility results

Similar results to the scenario approach theorem (i.e., feasibility of x̂N
guaranteed up to a confidence 1− β) can be obtained, under various
different settings:

When X is finite;

When H(x , ξ) is of the form H(x , ξ) = ξ − h(x);

When H(·, ξ) is a Lipschitz function, with Lipschitz constant
independent of ξ.
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Problems with stochastic constraints Sampling approaches for chance constraints

Asymptotic results

Condition (A): There is an optimal solution x̄ of the true problem such
that for any ε > 0 there is x ∈ X with ‖x − x̄‖ ≤ ε and p(x) < α.

Consistency of SAA

Suppose that

(i) the significance levels of the true and SAA problems are the same,
i.e., γ = α,

(ii) the set X is compact,

(iii) the function g(x) is continuous,

(iv) H(x , ξ) is a Carathéodory function,

(v) condition (A) holds.

Then, νN → ν∗ and dist(ŜN , S
∗)→ 0 w.p.1 as N →∞.
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Problems with stochastic constraints Sampling approaches for chance constraints

Dealing with small probabilities

Let us consider again the reliability problem seen earlier, and suppose the
reliability factor is very small, say, 10−6.

What happens to the SAA approximation?

As we saw earlier, the sample size estimates to achieve some desirable
confidence are proportional to 1/α.

This is not surprising: the probability that the first violation occurs in
the kth sample is (1− α)k−1α.

Therefore, on average we need (1− α)/α samples just to obtain
one case for which violation occurs!

So, we need a lot of samples.

But each sample corresponds to a variable in the IP formulation!
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Problems with stochastic constraints Sampling approaches for chance constraints

Why not just use α = 0?

α	=0	:	Shortest	Path	Solution	
(optimal)

ρ=0.1

No.	of	connections	routed	on	each	link	=	10
Capacity	wl on	each	link	=10

Total	cost:	18	× 10	=180
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Problems with stochastic constraints Sampling approaches for chance constraints

Why not just use α = 0?

α	=0	:	Shortest	Path	Solution	
(optimal)

ρ=0.1

No.	of	connections	routed	on	each	link	=	10
Capacity	wl on	each	link	=10

Total	cost:	18	× 10	=180

α	=10-6	 :	Shortest	Path	Solution

ρ=0.1

No.	of	connections	routed	on	each	link	=	10
Capacity	wl on	each	link	=7

Total	cost:	18	× 7	=	126
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Problems with stochastic constraints Sampling approaches for chance constraints

Why not just use α = 0?

α	=10-6	:Optimal	Solution

ρ=0.1

No.	of	connections	routed	on	each	
clockwise link	=	28
No.	of	connections	routed	on	each	
counterclockwise link	=	1

Capacity	wl on	each	clockwise	link	=12
Capacity	wl on	each	c/clockwise	link	=1

Total	cost:	9	× 12	+	9	× 1	=117

Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 11 32 / 33



Problems with stochastic constraints Sampling approaches for chance constraints

Lessons from this example

We cannot pretend that a very small α is equivalent to zero...

On the other hand, when α is very small SAA will require a lot of
samples!

We need to do some ”smarter sampling”

One such strategy is importance sampling — see Guzin’s talk!
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