

Functions to the Extended Real Line

Given $f: \mathcal{M} \to \overline{\mathbb{R}}$. The epigraph of f is:

$$\operatorname{epf}(f) = \{(x,t) \in \mathcal{M} \times \mathbb{R} : f(x) \le t\}$$

The effective domain is $\operatorname{dom}(f) = \{x \in \mathcal{M} : f(x) < +\infty\}$ Note that $\operatorname{dom}(f) = \operatorname{proj}_{\mathcal{M}}(\operatorname{epf}(f))$ Given a real number l we define the sub-level $[f \leq l]$ by

$$[f \le l] = \{x \in \mathcal{M} : f(x) \le l\}$$

The function is called proper if $f \not\equiv +\infty$ and $f > -\infty$.

Functions to the Extended Real Line

Examples

Supremum Function

Given a family $f_{\lambda} : \mathcal{M} \to \overline{\mathbb{R}}$, for $\lambda \in \Lambda$. The supremum function $f(x) = \sup_{\lambda \in \Lambda} f_{\lambda}(x) \in \overline{\mathbb{R}}$ is well defined. Also $\operatorname{epf}(f) = \cap_{\lambda \in \Lambda} \operatorname{epf}(f_{\lambda})$

Sum of Functions

Given a sequence of functions $f_i : \mathcal{M} \to \overline{\mathbb{R}}$, for $i = 1, 2, \dots, m$. Whenever

 $\begin{array}{l} (\cup_{i=1}^{m} \{x : f_i(x) = +\infty\}) \cap (\cup_{i=1}^{m} \{x : f_i(x) = -\infty\}) = \phi, \text{ the sum function } f(x) = \sum_{i=1}^{m} f_i(x) \text{ is well defined. Also we have that } \operatorname{dom}(f) = \cap_{i=1}^{m} \operatorname{dom}(f_i). \end{array}$

Indicator Function

Given any subset $D \subset \mathcal{M}$, the indicator function is defined by

$$\delta_D(x) = \begin{cases} 0 & \text{if } x \in D \\ +\infty & \text{otherwise} \end{cases}$$

Lower Semicontinuous Functions

A function $f : \mathcal{M} \to \overline{\mathbb{R}}$ is lower semicontinuous (l.s.c.) if its epigraph $\operatorname{epi}(f)$ is closed in $\mathcal{M} \times \mathbb{R}$.

- 1. A function f is l.s.c. if and only if the sub-level set $[f \leq l]$ is closed for all $l \in \mathbb{R}$.
- 2. If $\{f_{\lambda}\}_{\lambda \in \Lambda}$ is a family of l.s.c. functions, then $\sup_{\lambda \in \Lambda} f_{\lambda}$ is also l.s.c.

" f is convex if $epf(f) \subset \mathcal{M} \times \mathbb{R}$ is a convex set."

Equivalently: f is convex if

 $f(tx+(1-t)y) \leq tf(x)+(1-t)f(y), \quad \forall x,y \in \mathrm{dom}(f), \forall t \in [0,1]$

- If f is convex \Rightarrow dom(f) is convex.
- If f is convex $\Rightarrow \{x : f(x) \le M\}$ is convex, for all $M \in \mathbb{R}$

Fenchel Conjugate

For a normed space \mathcal{M} , there exists its dual space \mathcal{M}^* and a duality product $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M}^* \to \mathbb{R}$. Considering these elements, for a function $f : \mathcal{M} \to \overline{\mathbb{R}}$, we define its Fenchel conjugate $f^* : \mathcal{M}^* \to \overline{\mathbb{R}}$ by

$$f^*(x^*) = \sup_{x \in \mathcal{M}} \langle x, x^* \rangle - f(x)$$

- f^* is convex l.s.c.
- If $g \leq f$, then $f^* \leq g^*$.

Proposition

Given a function $f: \mathcal{M} \to \overline{\mathbb{R}}$, we have

- If f is proper and there exist $x^* \in \mathcal{M}^*$ and $\alpha \in \mathbb{R}$ such that $f(x) \ge \langle x, x^* \rangle \alpha$ for all x, then f^* is proper.
- If f is convex proper l.s.c., then f^* is proper.

Proposition

If f is convex, then $x^* \in \partial f(x)$ if and only if $f(x) + f^*(x^*) = \langle x, x^* \rangle$.

Fenchel Conjugate

Lemma

For any function f we have that $f \ge f^{**}$.

Lemma

If f is a proper convex l.s.c function then

$$f(x) = \sup_{L \le f, \ L \text{ affine}} L(x)$$

Theorem

If f is a proper convex l.s.c function then

$$f = f^{**}$$

Remark. For any function f, if g is proper convex l.s.c. and $g \leq f$, then $g \leq f^{**} \leq f$.

For a risk measure $\rho : \mathcal{M} \to \overline{\mathbb{R}}$ with conjugate $\rho^* : \mathcal{M}^* \to \overline{\mathbb{R}}$ we have that

- ► Translation invariance of ρ implies $\mathbb{E}[Z^*] = 1$, for all $Z^* \in \operatorname{dom}(\rho^*)$.
- If is ρ monotone, then $Z^* \ge 0$, for all $Z^* \in \operatorname{dom}(\rho^*)$.
- If is ρ positively homogeneous, then $\rho^* = \delta_{\operatorname{dom}(\rho^*)}$.

Coherent Risk Measures

Proposition

A proper risk measure ρ is coherent l.s.c. if and only if there exists a convex closed $\mathcal{U} \subset \{Z^* \ge 0 : \mathbb{E}[Z^*] = 1\}$ such that

$$\rho(Z) = \sup_{Z^* \in \mathcal{U}} \mathbb{E}[Z^* Z]$$

On these cases we have that

$$\partial \rho(Z) = \operatorname{argmax}_{Z^* \in \mathcal{U}} \mathbb{E}[Z^*Z] \subset \partial \rho(0) = \mathcal{U} = \operatorname{dom}(\rho^*)$$

Example. $\mathcal{U} = \{\chi_{\Omega}\}$ and $\mathcal{U} = \{Z^* \ge 0 : \mathbb{E}[Z^*] = 1\}$

Coherent Risk Measures

$$\label{eq:proposition} \begin{split} & \text{Proposition} \\ & \text{For } 0 < \alpha < 1 \text{ we have that} \end{split}$$

$$AVaR_{\alpha}(Z) = \max_{Z^* \in \mathcal{U}} \mathbb{E}[Z^*Z]$$

where $\mathcal{U} = \{Z^* \ge 0 : Z^* \le \frac{1}{\alpha}, \mathbb{E}[Z^*] = 1\}.$ Moreover

$$\partial AVaR_{\alpha}(Z) = \left\{ \begin{array}{ll} Z^* = \frac{1}{\alpha} & \text{if } Z > v \\ Z^* : & Z^* \in [0, \frac{1}{\alpha}] & \text{if } Z = v \\ Z^* = 0 & \text{if } Z < v \end{array} \right\}$$

where v is a minimizer for the optimization problem that defines $AVaR_{\alpha}(Z)$.

Proof. We already know that dom $(AVaR^*) = U \subset \{Z^* \ge 0 : \mathbb{E}[Z^*] = 1\}$. On the other hand, from the definition we have that

$$\begin{aligned} AVaR^*(Z^*) &= \sup_{Z} \{\mathbb{E}[Z^*Z] - AVaR_{\alpha}(Z)\} \\ &= \sup_{Z} \{\mathbb{E}[Z^*Z] - \min_{u} \{u + \frac{1}{\alpha}\mathbb{E}[[Z - u]^+]\}\} \\ &= \sup_{Z,u} \{\mathbb{E}[Z^*Z] - u - \frac{1}{\alpha}\mathbb{E}[[Z - u]^+]\} \\ &= \sup_{Z,u} \{\mathbb{E}[Z^*(Z - u)] - \frac{1}{\alpha}\mathbb{E}[[Z - u]^+]\} \\ &= \sup_{Z,u} \{\mathbb{E}[(Z^* - \frac{1}{\alpha})[Z - u]^+] - \mathbb{E}[Z^*[Z - u]^-]\} \end{aligned}$$

Now, we will prove that if $Z^* \in \mathcal{U}$, then $Z^* \leq 1/\alpha$. For that, assume that the set $A := [Z^* > 1/\alpha]$ has positive probability. Then for each natural number n we can consider the random variable $Z_n := n\chi_A$. Then, plugging Z_n and u = 0 in the last equality above, we have that

$$AVaR^{*}(Z^{*}) = \sup_{Z,u} \{\mathbb{E}[(Z^{*} - \frac{1}{\alpha})[Z - u]^{+}] - \mathbb{E}[Z^{*}[Z - u]^{-}]\}$$

$$\geq \mathbb{E}[(Z^{*} - \frac{1}{\alpha})[Z_{n}]^{+}] = \mathbb{E}[(Z^{*} - \frac{1}{\alpha})n\chi_{A}] = n\mathbb{E}[(Z^{*} - \frac{1}{\alpha})\chi_{A}] > 0$$

then, as $n \to +\infty$ we have that $AVaR^*(Z^*) \to \infty$, which contradicts the fact that $Z^* \in \mathcal{U}$. Thus $Z^* \leq 1/\alpha$. Also, taking $Z^* \in \{Z^* \geq 0, \mathbb{E}[Z^*] = 1, Z^* \leq 1/\alpha\}$, we have that $Z^*(Z - u) \leq \frac{1}{\alpha}[Z - u]^+, \forall Z, u$, and so $AVaR^*(Z^*) = \sup_{Z,u} \{\mathbb{E}[Z^*(Z - u)] - \frac{1}{\alpha}\mathbb{E}[[Z - u]^+]\} \leq 0 < \infty$, which implies that $Z^* \in \mathcal{U}$. In this way, we have proven that $\mathcal{U} = \{Z^* \geq 0, \mathbb{E}[Z^*] = 1, Z^* \leq 1/\alpha\}$. Now, we will characterize $\partial AVaR_\alpha(Z)$. For this, note that $Z^* \in \partial AVaR_\alpha(Z)$ iff $AVaR_\alpha(Z) = \mathbb{E}[Z^*Z]$ and $Z^* \in \mathcal{U}$. Let v a minimizer of $AVaR_{\alpha}(Z) = \min_{u} u + (1/\alpha)\mathbb{E}[[Z - u]^+]$. Then $Z^* \in \partial AVaR_{\alpha}(Z)$ iff $Z^* \in \mathcal{U}$ and $\mathbb{E}[Z^*Z] = v + (1/\alpha)\mathbb{E}[[Z - v]^+]$. This is equivalent to

$$0 = \mathbb{E}[Z^*Z] - v - (1/\alpha)\mathbb{E}[[Z - v]^+]$$

= $\mathbb{E}[Z^*(Z - v) - (1/\alpha)[Z - v]^+]$

Since $Z^*(Z-v) - (1/\alpha)[Z-v]^+ \leq 0$, we have that $Z^*(Z-v) - (1/\alpha)[Z-v]^+ = 0$. From this equality,

- 1. For $\omega \in [Z > v]$, we have $(Z_{\omega} v) = [Z_{\omega} v]^+ > 0$, so, since $Z^*_{\omega}(Z_{\omega} v) (1/\alpha)[Z_{\omega} v]^+ = 0$, we have that $Z^*_{\omega} = 1/\alpha$.
- 2. For $\omega \in [Z < v]$, we have $(Z_{\omega} v) < 0$ and $[Z_{\omega} v]^+ = 0$, so, we have that $Z^*_{\omega}(Z_{\omega} v) = 0$, thus $Z^*_{\omega} = 0$.

This shows that

$$\partial AVaR_{\alpha}(Z) \subset \left\{ \begin{aligned} Z^* &= \frac{1}{\alpha} & \text{if } Z > v \\ Z^* &: \quad Z^* \in [0, \frac{1}{\alpha}] & \text{if } Z = v \\ Z^* &= 0 & \text{if } Z < v \end{aligned} \right\}$$

Proving the other inclusion is straightforward.