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Functions to the Extended Real Line

Given f :M→ R. The epigraph of f is:

epf(f) = {(x, t) ∈M× R : f(x) ≤ t}

The effective domain is dom(f) = {x ∈M : f(x) < +∞}
Note that dom(f) = projM(epf(f))
Given a real number l we define the sub-level [f ≤ l] by

[f ≤ l] = {x ∈M : f(x) ≤ l}

The function is called proper if f 6≡ +∞ and f > −∞.
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Functions to the Extended Real Line
Examples

Supremum Function

Given a family fλ :M→ R, for λ ∈ Λ. The supremum function
f(x) = supλ∈Λ fλ(x) ∈ R is well defined. Also
epf(f) = ∩λ∈Λepf(fλ)

Sum of Functions
Given a sequence of functions fi :M→ R, for i = 1, 2, . . . ,m.
Whenever
(∪mi=1{x : fi(x) = +∞}) ∩ (∪mi=1{x : fi(x) = −∞}) = φ, the sum
function f(x) =

∑m
i=1 fi(x) is well defined. Also we have that

dom(f) = ∩mi=1dom(fi).

Indicator Function
Given any subset D ⊂M, the indicator function is defined by

δD(x) =

{
0 if x ∈ D

+∞ otherwise
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Lower Semicontinuous Functions

A function f :M→ R is lower semicontinuous (l.s.c.) if its
epigraph epi(f) is closed in M× R.

1. A function f is l.s.c. if and only if the sub-level set [f ≤ l]
is closed for all l ∈ R.

2. If {fλ}λ∈Λ is a family of l.s.c. functions, then supλ∈Λ fλ is
also l.s.c.
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Convex Functions

“ f is convex if epf(f) ⊂M× R is a
convex set.”

Equivalently: f is convex if

f(tx+(1−t)y) ≤ tf(x)+(1−t)f(y), ∀x, y ∈ dom(f), ∀t ∈ [0, 1]

I If f is convex ⇒ dom(f) is convex.

I If f is convex ⇒ {x : f(x) ≤M} is convex, for all M ∈ R
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Fenchel Conjugate

For a normed space M, there exists its dual space M∗ and a
duality product 〈·, ·〉 :M×M∗ → R. Considering these
elements, for a function f :M→ R, we define its Fenchel
conjugate f∗ :M∗ → R by

f∗(x∗) = sup
x∈M
〈x, x∗〉 − f(x)

I f∗ is convex l.s.c.

I If g ≤ f , then f∗ ≤ g∗.
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Fenchel Conjugate

Proposition

Given a function f :M→ R, we have

I If f is proper and there exist x∗ ∈M∗ and α ∈ R such that
f(x) ≥ 〈x, x∗〉 − α for all x, then f∗ is proper.

I If f is convex proper l.s.c., then f∗ is proper.

Proposition

If f is convex, then x∗ ∈ ∂f(x) if and only if
f(x) + f∗(x∗) = 〈x, x∗〉.
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Fenchel Conjugate

Lemma
For any function f we have that f ≥ f∗∗.

Lemma
If f is a proper convex l.s.c function then

f(x) = sup
L≤f, L affine

L(x)

Theorem
If f is a proper convex l.s.c function then

f = f∗∗

Remark. For any function f , if g is proper convex l.s.c. and
g ≤ f , then g ≤ f∗∗ ≤ f .
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Coherent Risk Measures

For a risk measure ρ :M→ R with conjugate ρ∗ :M∗ → R we
have that

I Translation invariance of ρ implies E[Z∗] = 1, for all
Z∗ ∈ dom(ρ∗).

I If is ρ monotone, then Z∗ ≥ 0, for all Z∗ ∈ dom(ρ∗).

I If is ρ positively homogeneous, then ρ∗ = δdom(ρ∗).
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Coherent Risk Measures

Proposition

A proper risk measure ρ is coherent l.s.c. if and only if there
exists a convex closed U ⊂ {Z∗ ≥ 0 : E[Z∗] = 1} such that

ρ(Z) = sup
Z∗∈U

E[Z∗Z]

On these cases we have that

∂ρ(Z) = argmaxZ∗∈UE[Z∗Z] ⊂ ∂ρ(0) = U = dom(ρ∗)

Example. U = {χΩ} and U = {Z∗ ≥ 0 : E[Z∗] = 1}
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Coherent Risk Measures

Proposition

For 0 < α < 1 we have that

AV aRα(Z) = max
Z∗∈U

E[Z∗Z]

where U = {Z∗ ≥ 0 : Z∗ ≤ 1
α , E[Z∗] = 1}.

Moreover

∂AV aRα(Z) =

Z∗ :
Z∗ = 1

α if Z > v
Z∗ ∈ [0, 1

α ] if Z = v
Z∗ = 0 if Z < v

,E[Z∗] = 1


where v is a minimizer for the optimization problem that
defines AV aRα(Z).
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Proof. We already know that dom(AV aR∗) = U ⊂ {Z∗ ≥ 0 : E[Z∗] = 1}. On the other hand,
from the definition we have that

AV aR
∗
(Z

∗
) = sup

Z
{E[Z

∗
Z]− AV aRα(Z)}

= sup
Z
{E[Z

∗
Z]−min

u
{u +

1

α
E[[Z − u]

+
]}}

= sup
Z,u
{E[Z

∗
Z]− u−

1

α
E[[Z − u]

+
]}

= sup
Z,u
{E[Z

∗
(Z − u)]−

1

α
E[[Z − u]

+
]}

= sup
Z,u
{E[(Z

∗ −
1

α
)[Z − u]

+
]− E[Z

∗
[Z − u]

−
]}

Now, we will prove that if Z∗ ∈ U, then Z∗ ≤ 1/α. For that, assume that the set
A := [Z∗ > 1/α] has positive probability. Then for each natural number n we can consider the
random variable Zn := nχA. Then, plugging Zn and u = 0 in the last equality above, we have
that

AV aR
∗
(Z

∗
) = sup

Z,u
{E[(Z

∗ −
1

α
)[Z − u]

+
]− E[Z

∗
[Z − u]

−
]}

≥ E[(Z
∗ −

1

α
)[Zn]

+
] = E[(Z

∗ −
1

α
)nχA] = nE[(Z

∗ −
1

α
)χA] > 0

then, as n→ +∞ we have that AV aR∗(Z∗)→∞, which contradicts the fact that Z∗ ∈ U.
Thus Z∗ ≤ 1/α. Also, taking Z∗ ∈ {Z∗ ≥ 0, E[Z∗] = 1, Z∗ ≤ 1/α}, we have that

Z∗(Z − u) ≤ 1
α

[Z − u]+, ∀Z, u, and so

AV aR∗(Z∗) = supZ,u{E[Z∗(Z − u)]− 1
α
E[[Z − u]+]} ≤ 0 <∞, which implies that Z∗ ∈ U.

In this way, we have proven that U = {Z∗ ≥ 0, E[Z∗] = 1, Z∗ ≤ 1/α}.
Now, we will characterize ∂AV aRα(Z). For this, note that Z∗ ∈ ∂AV aRα(Z) iff
AV aRα(Z) = E[Z∗Z] and Z∗ ∈ U. Let v a minimizer of
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AV aRα(Z) = minu u + (1/α)E[[Z − u]+]. Then Z∗ ∈ ∂AV aRα(Z) iff Z∗ ∈ U and

E[Z∗Z] = v + (1/α)E[[Z − v]+]. This is equivalent to

0 = E[Z
∗
Z]− v − (1/α)E[[Z − v]

+
]

= E[Z
∗
(Z − v)− (1/α)[Z − v]

+
]

Since Z∗(Z − v)− (1/α)[Z − v]+ ≤ 0, we have that Z∗(Z − v)− (1/α)[Z − v]+ = 0. From this
equality,

1. For ω ∈ [Z > v], we have (Zω − v) = [Zω − v]+ > 0, so, since

Z∗
ω(Zω − v)− (1/α)[Zω − v]+ = 0, we have that Z∗

ω = 1/α.

2. For ω ∈ [Z < v], we have (Zω − v) < 0 and [Zω − v]+ = 0, so, we have that
Z∗
ω(Zω − v) = 0, thus Z∗

ω = 0.

This shows that

∂AV aRα(Z) ⊂

Z∗
:

Z∗ = 1
α

if Z > v

Z∗ ∈ [0, 1
α

] if Z = v
Z∗ = 0 if Z < v

, E[Z
∗
] = 1


Proving the other inclusion is straightforward.
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