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Functions to the Extended Real Line

Given f: M — R. The epigraph of f is:
epf(f) = {(z,t) € M x R: f(z) <t}

The effective domain is dom(f) = {x € M : f(z) < o0}
Note that dom(f) = proj(epf(f))
Given a real number [ we define the sub-level [f <] by

[f <l ={zeM: f(x) <}

The function is called proper if f # 400 and f > —o0.
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Functions to the Extended Real Line

Examples

Supremum Function

Given a family f) : M — R, for A € A. The supremum function
f(z) = supyep fr(z) € R is well defined. Also

epf(f) = NMreaepf(fr)

Sum of Functions

Given a sequence of functions f; : M — R, for i = 1,2,...,m.
Whenever

(U {z : filx) = +oo}) N (U2 {z : fi(z) = —o0}) = ¢, the sum
function f(z) =", fi(x) is well defined. Also we have that
dom(f) = N ,dom(f;).
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Indicator Function
Given any subset D C M, the indicator function is defined by

0 ifzeD
+o0o otherwise

dp(r) = {



Lower Semicontinuous Functions

A function f: M — R is lower semicontinuous (l.s.c.) if its
epigraph epi(f) is closed in M x R.
1. A function f is Ls.c. if and only if the sub-level set [f <]
is closed for all [ € R.

2. If {fa}rea is a family of L.s.c. functions, then supyc, fi is
also l.s.c.



Convex Functions

“ f 1S CONVEX IF epf(f) CM xR 1S A
CONVEX SET.”

Equivalently: f is convex if

fltz+(1—-t)y) <tf(x)+(1-1t)f(y), Va,y € dom(f),Vte [0,1]

» If f is convex = dom(f) is convex.
» If fis convex = {x: f(z) < M} is convex, for all M € R



Fenchel Conjugate

For a normed space M, there exists its dual space M™* and a
duality product (-,-) : M x M* — R. Considering these
elements, for a function f: M — R, we define its Fenchel
conjugate f*: M* — R by

fH(@7) = sup (z,27) — f(z)

zeM

> f*is convex l.s.c.
» If g < f, then f* < g".



Fenchel Conjugate

Proposition
Given a function f: M — R, we have
» If f is proper and there exist * € M* and «a € R such that
f(x) > (z,2*) — a for all x, then f* is proper.

» If f is convex proper l.s.c., then f* is proper.

Proposition
If f is convex, then z* € df(x) if and only if
flx)+ [ (2") = (z,2%).



Fenchel Conjugate

Lemma
For any function f we have that f > f**.

Lemma
If f is a proper convex l.s.c function then

flx)=sup  L(x)
L<Zf, L affine

Theorem
If f is a proper convex l.s.c function then

f:f**

Remark. For any function f, if g is proper convex l.s.c. and
g <[, theng < ™ < f.



Coherent Risk Measures

For a risk measure p : M — R with conjugate p* : M* — R we
have that
» Translation invariance of p implies E[Z*] = 1, for all
Z* € dom(p*).
» If is p monotone, then Z* > 0, for all Z* € dom(p*).

» If is p positively homogeneous, then p* = dqom(p+)-



Coherent Risk Measures

Proposition
A proper risk measure p is coherent l.s.c. if and only if there
exists a convex closed U C {Z* > 0: E[Z*] = 1} such that

p(Z) = sup E[Z*Z]
zZ*el

On these cases we have that

0p(Z) = argmax ;. E[Z*Z] C 0p(0) = U = dom(p*)

Example. U = {xq} and U ={Z* > 0: E[Z*] =1}
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Coherent Risk Measures

Proposition
For 0 < a < 1 we have that
AVaRy(Z) = max E[Z*Z]
Z*el

where U = {Z* > 0: Z* < L E[Z*] = 1}.
Moreover

zr=1 if Z>w
OAVaR(Z) = Z*: Z*€[0,1] if Z=v ,E[Z]=1

* e
Z* =0 if Z <o

where v is a minimizer for the optimization problem that
defines AVaR,(Z).
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Proof. We already know that dom(AVaR*) =U C {Z* > 0:E[Z"] = 1}. On the other hand,
from the definition we have that

AVaR™(Z™)

sup{E[Z* Z] — AVaRy(Z)}
z

« . 1 +
= S“P{]E[Z Z] — min{u + ;]E[[Z —u]"]}}

= sup{E[Z* Z] — u — 7111[[ —u) )y
Z,u
= sup{ELZ" (2 = )] - ~E(1Z - u*))

* 1 + * —
= sup(E(Z" — (2 "]~ E[2"1Z — w7 ]}

Now, we will prove that if Z* € U, then Z* < 1/a. For that, assume that the set

A :=[Z* > 1/a] has positive probability. Then for each natural number n we can consider the
random variable Z,, := nx 4. Then, plugging Z,, and u = 0 in the last equality above, we have
that

AVaR*(2*) = sup{B[(Z" — é)[z — T~ E[Z*[Z -] ]}

,u

L1 i L1 L1
> E[(Z" — ;)[Zn] | =E[(Z" - ;)”XA] =nE[(Z" - E)XA] >0

then, as n — +oo we have that AVaR*(Z™) — oo, which contradicts the fact that Z* € U.
Thus Z* < 1/a. Also, taking Z* € {Z* > 0,E[Z*] =1,Z* < 1/a}, we have that

Z*(Z —u) < é[Z —u]t,VZ, u, and so

AVaR*(Z") = supz {E[Z"(Z — u)] — 1]E[[Z — u]T]} <0 < oo, which implies that Z* € U.
In this way, we have proven that U = {Z* >0,E[Z*]=1,Z* < 1/a}.

Now, we will characterize 9AVaRn (Z). For this, note that Z* € 9AVaRy (Z) iff
AVH.RC,(Z) =E[Z*Z] and Z* € U. Let v a minimizer of
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AVaRo(Z) = ming u + (1/a)E[[Z — u]T]. Then Z* € 9AVaR4(Z) iff Z* € U and
E[Z*Z] = v 4+ (1/a)E[[Z — v]T]. This is equivalent to

0=E[Z2*Z] —v — (1/)E[[Z — v]T]
=E[2"(Z —v) — (1/a)[Z — v]T]

Since Z*(Z —v) — (1/a)[Z — v]T < 0, we have that Z*(Z — v) — (1/a)[Z — v]T = 0. From this
equality,
1. For w € [Z > v], we have (Z, — v) = [Z, — v]T > 0, so, since
Z(Zw —v) — (1/a)[Zw — v]t =0, we have that zZ5 =1/c.
2. For w € [Z < v], we have (Z, —v) < 0 and [Z,, — v]T = 0, so, we have that
Z}(Zy —v) =0, thus Z} = 0.
This shows that

[~

Z*

= if Z >w
o
0AVaRa(Z) C(Z": Zz*€[0,L] ifz=0v ,E[Z7]=1
Z* =0 if Z<wv

Proving the other inclusion is straightforward.
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