

Given a random variable Z.

- 1. For $0 < \alpha < 1$ we have that $\mathbb{P}[Z > VaR_{\alpha}(Z)] \le \alpha \le \mathbb{P}[Z \ge VaR_{\alpha}(Z)]$
- 2. For $\mathbb{P}[Z > VaR_{\alpha}(Z)] \leq \beta < \mathbb{P}[Z \geq VaR_{\alpha}(Z)]$ we have that $VaR_{\alpha}(Z) = VaR_{\beta}(Z)$.

So, if Z has an atom at $VaR_{\alpha}(Z)$, then VaR is blind to some changes at risk level.

Coherent Risk Measures

A risk measure

$$\rho: \mathcal{M} \to \overline{\mathbb{R}}$$
$$Z \to \rho(Z)$$

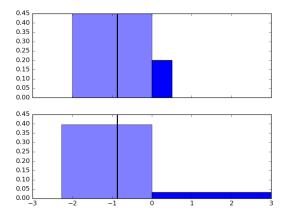
is said to be coherent if it satisfies

- ► Translation Equivariance: $\rho(Z + a) = \rho(Z) + a, \quad \forall Z, \forall a \in \mathbb{R}$
- Monotonicity: $\rho(Z) \le \rho(Y)$, if $Z \le Y$
- ▶ Subadditivity: $\rho(Y + Z) \le \rho(Y) + \rho(Z)$, $\forall Y, Z$
- ▶ Positive Homogeneity: $\rho(aZ) = a\rho(Z)$, $\forall a \ge 0, \forall Z$. Example. VaR is not coherent.

Remark

$$egin{bmatrix} {f Subadditivity} \ {f Positive Homogeneity} \end{bmatrix} \Leftrightarrow egin{bmatrix} {f Convexity} \ {f Positive Homogeneity} \end{bmatrix}$$

Two distributions with $VaR_{0.1} = 0$.



VaR is myopic to values worse than itself.

AVaR

Consider a <u>continuous</u> random variable $Z \in L^1$ and $0 < \alpha < 1$. We define the Average Value at Risk (at level α) by

$$AVaR_{\alpha}(Z) = \mathbb{E}[Z|Z > VaR_{\alpha}(Z)]$$
$$= \mathbb{E}[Z|Z \ge VaR_{\alpha}(Z)]$$
$$= \frac{\mathbb{E}[Z\chi_{[Z \ge VaR_{\alpha}(Z)]}]}{\mathbb{P}[Z \ge VaR_{\alpha}(Z)]}$$
$$= \frac{1}{\alpha}\mathbb{E}[Z\chi_{[Z \ge VaR_{\alpha}(Z)]}]$$

AVaR as optimal value

$$AVaR_{\alpha}(Z) = VaR_{\alpha}(Z) + \frac{1}{\alpha}\mathbb{E}\left[\left[Z - VaR_{\alpha}(Z)\right]^{+}\right]\right]$$

Consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(u) = u + \frac{1}{\alpha} \mathbb{E}\left[[Z - u]^+ \right] \right]$$

• g is finite.

- ▶ g is convex.
- $AVaR_{\alpha}(Z) = g(VaR_{\alpha}(Z))$

AVaR as optimal value

Proposition

The function g is differentiable and $g'(VaR_{\alpha}(Z))$. Thus, $VaR_{\alpha}(Z)$ is a minimizer of

$$AVaR_{\alpha}(Z) = \min_{u} u + \frac{1}{\alpha} \mathbb{E}\left[[Z - u]^{+} \right]$$

For computing AVaR, instead of computing VaR and expected value, you can solve an optimization problem.

AVaR for general distributions

Proposition

Given a random variable $Z \in L^1$ and $0 < \alpha < 1$, we have that

- 1. The function $g(u) = u + \frac{1}{\alpha} \mathbb{E}\left[[Z u]^+ \right]$ is finite and convex.
- 2. The optimization problem

$$\min_{u} u + \frac{1}{\alpha} \mathbb{E}\left[[Z - u]^+ \right] \right]$$

always has solution.

3. $VaR_{\alpha}(Z)$ is a minimizer of this optimization problem.

AVaR for general distributions

Definition

For a general random variable $Z \in L^1$ and $0 < \alpha < 1$, we define

$$AVaR_{\alpha}(Z) := \min_{u} u + \frac{1}{\alpha} \mathbb{E}\left[[Z - u]^{+} \right]$$

- ► This definition generalizes $AVaR_{\alpha}(Z) = \mathbb{E}[Z|Z > VaR_{\alpha}(Z)]$, for continuous random variables.
- ▶ The definition as optimal value does not gives any clue of its meaning for general distribution. However it has appealing properties.
- $AVaR_{\alpha}(Z) \ge VaR_{\alpha}(Z).$

AVaR for general distributions

Proposition

AVaR is a coherent risk measure.

Proposition

Given $Z \in L^1$.

- 1. If $0 < \alpha \leq \beta < 1$, then $AVaR_{\beta}(Z) \leq AVaR_{\alpha}(Z)$.
- 2. $\lim_{\alpha \uparrow 1} AVaR_{\alpha}(Z) = \mathbb{E}[Z] = \inf_{u} u + \mathbb{E}\left[[Z u]^+\right].$
- 3. The function $\alpha \to AVaR_{\alpha}(Z)$ is left continuous.

The level α can be regarded as being a risk tolerance level.