

Two Stage Problem

First Stage
$$\begin{cases} \min_{x} f(x) + \mathbb{E}[Q(x,\xi)] \\ \text{s. t. } x \in X \end{cases}$$

Second Stage
$$\begin{cases} Q(x,\xi) := \min_{y} g(y,\xi) \\ \text{s. t. } y \in \mathcal{G}(x,\xi) \end{cases}$$

- It is crucial $Q(x, \cdot)$ to be measurable, for all x.
- ► Easy case: ξ discrete random vector (since $Q(x, \cdot)$ is a discrete random variable).

▶ Example: Consider

- $\Omega = [0, 1]$ with the Lebesgue measure.
- $\xi(\omega) = \omega$ (uniform distribution)
- $\blacktriangleright \ \mathcal{G}(x,\xi) = [0,1]$
- ► $g(y,\xi) = \operatorname{sign}((\xi y\chi_N(y))^2)$, where $N \subset [0,1]$ is a nonmensurable set.

One Stage Problem

$$\begin{array}{ll} \min_{x,y_{\xi}} & f(x) + \mathbb{E}[g(y_{\xi},\xi)] \\ \text{s. t.} & x \in X \\ & y_{\xi} \in \mathcal{G}(x,\xi), \quad \text{a.e. } [\xi] \end{array}$$

- $g(y_{\xi}, \xi)$ needs to be measurable, for all x.
- Measurability of y_{ξ} is not required.

Proposition

Assuming that $Q(x,\xi)$, $g(y_{\xi},\xi)$ and the minimizers \bar{y}_{ξ} are measurable, then the one stage and two stage problems are equivalent.

Definition

A function $f:\mathbb{R}^n\times\mathbb{R}^q\to\overline{\mathbb{R}}$ is a Carathéodory function if

1.
$$f(x, \cdot)$$
 is measurable for all x .

1

2. $f(\cdot,\xi)$ is continuous for a. e. $[\xi]$.

Theorem

Given the problem

$$\begin{aligned} Q(x,\xi) &:= & \min_y \quad g(y,\xi) \\ & \text{s. t.} \quad c(y,\xi) \leq x \end{aligned}$$

If $g(y,\xi)$ and all components of $c(y,\xi)$ are Carathéodory functions, then $Q(x,\xi)$ is measurable, for all x.