

Two Stage Problem

First Stage
$$\begin{cases} \min_{x} f(x) + \mathbb{E}[Q(x,\xi)] \\ \text{s. t.} x \in X \end{cases}$$

Second Stage
$$\begin{cases} Q(x,\xi) := \min_{y} g(y,\xi) \\ \text{s. t.} y \in \mathcal{G}(x,\xi) \end{cases}$$

- It is crucial $Q(x, \cdot)$ to be measurable, for all x.
- ► Easy case: ξ discrete random vector (since $Q(x, \cdot)$ is a discrete random variable).
- Is the second stage minimizer function y_{ξ} measurable?.
- ▶ Example: Consider
 - $\Omega = [0, 1]$ with the Lebesgue measure.
 - $\xi(\omega) = \omega$ (uniform distribution)
 - $\mathcal{G}(x,\xi) = [0,1]$
 - ► $g(y,\xi) = \operatorname{sign}((\xi y\chi_N(y))^2)$, where $N \subset [0,1]$ is a non mensurable set.

One Stage Problem

$$\min_{x,y_{\xi}} f(x) + \mathbb{E}[g(y_{\xi},\xi)]$$

s. t. $x \in X$
 $y_{\xi} \in \mathcal{G}(x,\xi), \text{ a.e. } [\xi]$
 $y_{\xi} \text{ is measurable}$

• $g(y_{\xi}, \xi)$ needs to be measurable, for all x.

Proposition

Assuming that $Q(x,\xi)$ and $g(y_{\xi},\xi)$ are measurable, then the one stage and two stage problems are equivalent.

Definition

A function $g:\mathbb{R}^m\times\Omega\to\overline{\mathbb{R}}$ is a Carathéodory function if

- 1. $g(y, \cdot)$ is measurable for all y.
- 2. $g(\cdot, \omega)$ is continuous for a. e. $[\omega]$.

Theorem

If g is a Carathéodory function and the probability measure (on Ω), then g is measurable over $\mathbb{R}^m \times \Omega$.

Given the problem

$$\begin{array}{rcl} G(\omega) := & \min_{y} & g(y,\omega) \\ & \text{s. t.} & c(y,\omega) \leq 0 \end{array} \right\} (P)$$

Theorem

If all components of $c(y, \omega)$ are Carathéodory functions, then there exists a family $\{c^k\}_{k=1}^{\infty}$ of measurable functions such that for each ω , $\{c^k(\omega)\}_{k=1}^{\infty}$ is a dense subset of $\{y : c(y, \omega) \leq 0\}$.

Theorem

If $g(y, \omega)$ and all components of $c(y, \omega)$ are Carathéodory functions, then $G(\omega)$ is measurable. Also, if $\mathbb{E}[G] \in \mathbb{R}$, and $\bar{y}(\omega)$ is a minimizer of (P), then \bar{y} is measurable and solves

$$\mathbb{E}[G] = \min_{y} \quad \mathbb{E}[g(y_{\omega}, \omega)]$$

s. t. $c(y_{\omega}, \omega) \leq 0$
 y_{ω} is measurable