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Find x € X,

max min(A*x — b*") = 0,
BeB acA
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Find x € X, maxmin(A“’x — b*) =0,
BeB acA

& X =RN (or X =RY)

& For f,g € X, min(f, g) = (min(f;, gi))i=1,... n-
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Find x € X, maxmin(A“’x — b*) =0,
BeB acA

& X =RN (or X =RY)
& For f,g € X, min(f, g) = (min(f;, gi))i=1,... n-

% A and B are compact sets of metric spaces
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Find x € X, maxmin(A“’x — b*) =0, J
BeB acA

& X =RN (or X =RY)
& For f,g € X, min(f, g) = (min(f;, gi))i=1,... n-

% A and B are compact sets of metric spaces

% For every (o, 8) € A x B, the matrix A%# and vector b*# € X are known.
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Find x € X,

min max(A*°x — b*7) = 0,
acA peB
ﬂ Some examples

=] 5 = E £ DA
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Example 1: Obstacle Problem (OP)

Find x € RN, min(Qx — b, x—g) =0

=] 5 = E acy
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Example 1: Obstacle Problem (OP)

Find x € RN, min(Qx — b, x—g) =0

@ If Q > 0 sym., (OP) is equivalent to

Minimize 1(Ox,x) —(b,x)

xcRNand x>g

N
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Example 1: Obstacle Problem (OP)
Find x € RN, min(Qx — b, x—g) =0

@ If Q > 0 sym., (OP) is equivalent to

Minimize %(Ox,x) — (b, x)
xcRNand x>g

— obstacle ()
@ Variational inequality: - Qx—b:Og
\ — min(Qx-b,x-g)=
min(—Au(s) — f(s),u(s) — g(s)) =0
a.e. se€(0,1), !

0
0.0
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Example 2: Double Obstacle Problem (DOP)
Find x € RN, max(min(Qx — b,x — g),x —h) =0

@ If Q > 0 sym., (DOP) is equivalent to

Minimize %(Qx,x) — (b, x)
xeRVand h>x>g

— obstacle (g)
— obstacle(h)
— solution x

0.0 05 1.0
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» (OP) is equivalent to solve
min(A%x — b°, A'x — b") =0,

with A :=Q, b°:=b and A':=1l; b':=g.
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» (OP) is equivalent to solve
min (A*x — b%) =0,
ae{0,1}

with A :=Q, b°:=b and A':=1l; b':=g.
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» (OP) is equivalent to solve

min (A*x — b%) =0,

ae{0,1}

with A :=Q, b°:=b and A':=1l; b':=g.

» In the same way, (DOP) is equivalent to: Find x € RV,

max min (A*’x — b*?) =0,
3€{0,1} ac{0,1}

with  A*?.=Q, b :=p
A0 =y, b =g
AT = AV = |, > = p"' = h.
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Example 3: Stochastic Path Problems

Bertsekas, Tsitsiklis, Kushner, Shiryaev, Quadrat, ...

» Consider a familty of N states denoted (&/)/=1,... n-

» Consider the set of admissible policies:
Asa = {a = (a1, at,-+) | er € U},
where U is a compact set of R™.

» P(«): the transition probability matrix corresponding to « € U, that is the
matrix with elements [P(«)]; = pj(«).

> Let also denote c(«) the vector of expected costs c;(«), at node &,
corresponding to the policy a.
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Pin(vo)

C,'(Oéo) 1

| Ck(az2)

2(cv0)

Pit(ao)

Ci(aw)  + Z Pjlao)ci(ar)  + > Pjlao)Pi(ar)ck(az)

J J:k
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» The expected cost corresponding to a policy a = {ag, a1, -} € AqiS
given by:

W(a) = 3 cgees [Pleo)Ples) - Plar-o)] ofa)
t=1

where W(a) € RV,

» The optimal expected cost is:

V= min W(a).
a€A.q

» The Bellman principle yields to:

(1+2)V = minfe(a) + Pa) V]
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Example 4: Two-person game

» Let us consider the discrete-time system (e is fixed)

Yki1 = Yk +V2ebv, k>0,  withyy=¢

» Let Q a convex set of R?, and 7 its boundary.

» We assume that we have two opponent players.
- Player 1 (the evader) starts from &, and his goal is to reach the target 7.
- Player 2 (the pursuer) is trying to obstruct him.
The rules of the game are simple. At each timestep:

@ Player 1 chooses a vector v € R? with ||v| = 1.
@ Player 2 chooses b = +1 and replaces v with bv.

» Each step of the game costs .
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We consider the payoff

9(E) = ke if Player 1 needs k steps to reach T,
"] starting from ¢ and following an optimal strategy.

lvii=1b=

:>{19(§):m|n max(e+19(§+\/_bv)>, £e
() =0, s¢Q

T
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@ Consider (&)i=1,... n: @ grid on Q.
@ Consider the scheme

V, = ||m”m1 max (e+ [V](& + \/_bv)) 1<i<N

with V; stands for an approximation of ¥}(¢;), and [V] an interpolation of
(Vi)i=1,....n ON

‘ [VI(& + V2e bv) = (PPVV);
[V](¢) = 0, whenever ¢ ¢ Q

(P2 >0and y_; P =1 or < 1 for border points).
@ Final discrete equatlon.

V= min max (e+ P*>'V), UeR".
IVI|=1 b=+ 1

@ Remark: This model is related to front propagation with mean curvature
motion Ref: Kohn-Serfaty
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Example 5: Infinte Horizon Control problem

» Consider the OCP:

min iﬁ — Ny, uy);
=0

}//'+1 :f(ijuj)7 YO:X7

uyecUVjeN,

where f and ¢ are Lipsch. continuous functions, and U is a compact set.
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Example 5: Infinte Horizon Control problem

» Consider the OCP:

min iﬁ — Ny, uy);
=0

y/'+1 :f(ijuj)7 YO:X7

uyecUVjeN,

where f and ¢ are Lipsch. continuous functions, and U is a compact set.

» The Dynamic Programming Principle gives:

I(x) = Lnellr} {(x,u) + (1 = N)I(f(x,u))}.
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» Consider a uniform grid G with a constant mesh size. By &;, we denote
the nodes of G.
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» Consider a uniform grid G with a constant mesh size. By &;, we denote
the nodes of G.

» An approximation of the DPP on G is obtained as:

V(&) =)Vi = min {£(&, u) + (1 = MIVI(F(xi, )} -
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» Consider a uniform grid G with a constant mesh size. By &;, we denote
the nodes of G.

» An approximation of the DPP on G is obtained as:

V(&) =)Vi = min {£(&, u) + (1 = MIVI(F(xi, )} -

> Let uff positive coefficients such that:

D_m=1i

>0

5/7 Z,u//g/'

j>0
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» Consider a uniform grid G with a constant mesh size. By &;, we denote
the nodes of G.

» An approximation of the DPP on G is obtained as:

V(&) =)Vi = min {£(&, u) + (1 = MIVI(F(xi, )} -

> Let uf-;- positive coefficients such that:

>_myj=1;

>0

5/7 Z ,U//g/

j>0

> Set MY the matrix with coefficients M/ = vji. The DPP can be re-written
as:

V = min {L(u) + (1 = )M“V},

where L(u) is the vector with coefficients ¢(¢;, u).
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Example 6: Irreversible investment models

» Consider the SOCP :

o0

max E[S°(1 - \(C(X) - pur)]:
19(X) - X1 = (1t=—0 (5)X[ + U +wio Xy,  Xo = X,

uelUvteN,
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Example 6: Irreversible investment models
» Consider the SOCP :

o0

max E[ S (1 - \(CX) - pur):
19(X) = X1 = (1t:—0 5)X[ + U +wio Xy,  Xo = X,

uelUVteN,

@ X; is the generating capacity of firm at time ¢

@ u; is the number of capital unit acquired by the firm at a cost Su;
where 5 > 0 is interpreted as a conversion factor,

@ § > 0 is the depreciation rate of production, and ¢ its volatilities.
@ The random variable w; takes values +1 with probability %

@ The profit function C : R — R is concave and increasing.
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Example 6: Irreversible investment models

» Consider the SOCP :

o0

max B[S (1 - \(C(X) - pur)]:
19(X) - X1 = (1t=—0 (5)X[ + U +wio Xy, Xo = X,

uelUVteN,

» The Dynamic Programming Principle gives:

9(x) = L@EE[C(x) —Bu+ (1= NI((1 - 6)x + u+ wax)]
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Example 6: Irreversible investment models

» Consider the SOCP :

o0

max E[ > (1 - A(C0X) - pur)
19()() = X1 = (1t=—0 (5)X[ + U +wio Xy,  Xo = X,

uelUVteN,

» The Dynamic Programming Principle gives:

ﬁ(x):[lneig {C(x)—6u+ (1 ; A) (ﬁ((1 —)Xx+u+ox)+9((1 —d)x+u+ ox))}
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Find x € X,

min max(A*°x — b*7) = 0,
acA peB

@ Nonsmooth Newton method

=] 5 = E £ DA
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» Extension of the Newton method for solving nonsmooth equations
F(x) = 0 have been widely studied over the last two decades

(Robinson, Mifflin, Kummer, Bolte-Daniilidis-Lewis, Kuntz-Scholtes,
Facchinei-Pang, Qi-Sun, Ito-Kunish, Hintermuller, Ulbrich, ...)
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» Let F be locally Lipschitz. F is semismooth at x iff F is directionally
differentiable at x and

Meranl__a)>(<+h)|| (x + h) — F(x) | = o(l[Al)

Figure: Example of a semi-smooth function

Hasnaa Zidani (ENSTA ParisTech) Stochastic Optimal Control Problems SVAN 2016, IMPA 18/45



» Nonsmooth Newton Algorithm (semismooth function F)

(i) Choose a regular x° € X. Set k = 0.
(i) If F(x¥) = 0 then stop.
(i) Take Mk € OF(x¥), and solve

F(xk) + M*(x*+1 — xk) =0

(iv) set k = k+ 1 and return to (ii).
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» Nonsmooth Newton Algorithm (semismooth function F)
(i) Choose a regular x° € X. Set k = 0.
(i) If F(x¥) = 0 then stop.
(i) Take Mk € OF(x¥), and solve

F(xk) + M*(x*+1 — xk) =0
(iv) set k = k+ 1 and return to (ii).

» Superlinear convergence result
Let F : RN x RN is a semi-smooth function, and a regular point x* € RN
such that F(x*) = 0. Then

%> 0, VX0 € Bx",8), fim e =X _

k—oo ||Xk — X*||

We say that x is a regular point of F if each g € 9F(x) is invertible
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» A mapping F : X — X is called slantly differentiable in the open subset
D c X if there exists a family of mappings G : D — £(X, X) such that

IF(x + h) — F(x) — G(x + h)h|| = 0(||hl|), x € D.
Ref: Kummer'8s, ...

» The slant differentiability is a more general concept than
semismoothness concept. In fact, the slanting functions G(x + h) are not
required to be element of OF (x + h).

» If Fis semismooth on U, then a single-valued V(x) € 0F(x), x € U,
serves as a slanting function.
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» Nonsmooth Newton Algorithm (Slantly differentiable functions)

(i) Choose a regular x° € X. Set k = 0.
(i) If F(x¥) = 0 then stop.
(iii)y Compute x**! by solving

F(x*) + G(x*)(x*' —x¥) =0

(iv) set k = k + 1 and return to (ii).

» Convergence result
Let F : RN x RN is slantly differentiable in an open neigborhood U of x*

with slanting function G. If G(x) is nonsingular for all x € U and
{IIG(x)~"|| : x € U} is bounded, then

35 > 0, ¥x° € B(x*,5), the NNA converges superlinearly to x*

Ref: Ito-kunisch, Ulbrich, ...
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Find x € X,

min max(A*°x — b*7) = 0,
acA peB

@ Howard’s algorithm: min-problem

=] 5 = E £ DA
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Find x € RV, mingea(A*x — b*) = 0. (Prin)

It is useful to note that problem (Prin) is equivalent to

Find x € RN, min <A(a)X - b(a)) =0

ac AN

with  Aj(a) == A’

o, bi(a) = by,
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Find x € RN, mingea(A*x —b*)=0.  (Pmin)

It is useful to note that problem (Pnin) is equivalent to

Find x € RN, min (A(a)X - b(a)) =0
ac AN

with Aj(a) =AY, bi(a) = b".

Indeed, for all i,

0 = min (A% —b%), = min (Aa'x b“)
i

ac A I aean

= min <A(a)x - b(a))i
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Howard’s algorithm

Initialize o° in AN,
lterate for k > 0:
(i) find xk € RN solution of A(a*)x* = b(aX).

(if) o7 = argmin,_ v (A(a)x* — b(a)).
e Howard’s algorithm also called policy iterations method .

e Refs: Bellman (1955-57), Howard (1960), Puterman et al.
(1979), Santos et al. (04), ...
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Convergence results of Howard’s algorithm

We use the following assumptions

(H1) a € AN — A(a) and a € AN — b(a) are continuous (obvious if A is
finite).

(H2) Vo € AV, A(«) is a monotone matrix:

A)X>0 = X>0.

Theorem [Bokanowski-Maroso-HZ’09].
There exists a unique x* € RN solution of (Pnin). Moreover, Howard’s
sequence (x*) satisfies

(i) xk < x¥+1 for all k > 0, and x* converges to x*
(if) If Ais infinite, x* — x* super-linearly.

(iif) If A'is finite, the algorithm converges in (Card(.A))V iterations
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Idea of the proof (convergence)

® X < Xpit:

A(cf N )xk — b(akt1) =

I IA

e Unicity of x*: similar arguments.

e xx bounded: xx = A(af)~1b(ak).

min (A(e)x¥ — b(a))
A(F)xk — b(ak)
0

A(ak+1 )Xk+1 _ b(ak+1 )

e F(x*) = 0: using that F(xx) = A(a*+1)xk — b(ak+1)...
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Link with Newton’s algorithm

Let
F(x):= ané]TN(A(oz)X — b(a)).
Then:
A(ak+1 )Xk _ b(akH) = F(xk) policy improvement,
A(ak—H )Xk+1 _ b(ak‘H) =0 policy evaluation.
Therefore
Xk+1 _ Xk A(Ozk+1 )—1 F(Xk) (1)
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Superlinear Convergence
@ For every x € RV, set

A(X) = {a e AN, Ala)x — b(a) = F(x)}.

Then x — A(x) is upper semicontinuous.
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Superlinear Convergence

@ For every x € RV, set
A(X) = {a e AN, Ala)x — b(a) = F(x)}.
Then x — A(x) is upper semicontinuous.

@ F is slantly differentiable with slanting function x — A(«a(x)), with
a(x) € A(x).

@ Howard’s algorithm can be interpreted as a nonsmooth Newton method
for a slantly differentiable function: the superlinear convergence can be
obtained by the general theory.
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Application: Merton’s portfolio problem

e Model:

mln (8, ;(720423285319 —(ap+(1- a)r)x&ﬁ') =0,
te[0,T], se(0,Smax),

3(0,8) = ¢(8), s €(0,Smax)-

e Assume o(x) = x” (for some p € (0, 1))

e Mixed boundary condition at s = Spax:

Ox0(t, Smax) = Sfa 9(t, Smax)s € [0, T]. @)
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Finite Difference Scheme

e Mesh: Let s; = jh with h = Spax/Ns and t, = nAt with At = T/N, where
N>1and Ns > 1.

e Implicit Euler scheme:

min IN; §

acA

n+1 n n+1 n+1 n+1
(VI _V/' 1023‘-2042 Vj—1 _2V/' +V/’+1
i h2

Vfl+1 o Vfl+1
—(ap+(1 - 04)’)%‘%) =0,

j=0,...,Ns, n=0,...,N—1,

Vn+1_Vn+1
e Nt P ynt n=o,.. ,N-1,

max

\//0:()0(3/)7 j:O,...,Ns.
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Monotonicity.

For b := V" given (and for a given time iteration n > 0), the computation of

x =V e RNHT (i, x = (V... V™")T) is equivalent to solve
min(A“x — b) =

where A, := |+ AtB,, and B, is the matrix of R(Nst1)x(Ns+1) gych that, for all
_/ - 7NS - 1:

1 —U_1+2U_1 — U4
(Ball)y = +5o2sfa2 =1 Tt =

—(ap+(1 - a)r)sjw,

) We obtain the monotonicity of the
C.

(and similar expression for (B, U)n,)
matrices A% under a condition % <
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Figure: Plot of (U,-N) (left) and of the discrete optimal control («;) at time fy = 1 (right),

with respect to s;. Parameters: Snax =2, A =[4,6], p =

T =1,and Ns = 200, N = 20.
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Quadratic convergence (Rust and Santos 04’)

Set fi(x, a) := [A(a)x — b];.

@ Assume that A is a compact interval of R, forall 1 < i < N,
fi(x,a) = ri(x)a? 4+ si(x)o; + ti(x)  ¥x e RV,

with ri(x) > 0, and with r;(-) and s;(-) lipschitz functions.
@ In this case, for every x € X, a minimizeer o* is given by

of = argmin, . .fi(x,a) = PA(_zr,-((x)))

where P4 denotes the projection on the interval A.
@ Hence in the neighborhood of the solution x*, we obtain that
[aX — a*"|| < Const|x — x*||. This implies also that

|A(a¥) — A(a*7)|| < Const||x — x*||. This leads to a global quadratic
convergence result of Howard algorithm.
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Find x € X,

min max(A*°x — b*7) = 0,
acA peB

@ Obstacle problem

=] 5 = E £ DA
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find x e RY, min(Qx — b,x —g) =0,

Algorithm (Ho-2) for the obstacle problem: same as (Ho-1), but chose
a; = 0 in the case of equality (Qx* — b); = (x¥ — g);.

Theorem.

» Howard’s algorithm (Ho-2) converges in at most N iterations (i.e,
x* = xk*1 for some k < N).

» It is equivalent to the Primal-Dual Active set algorithm
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Idea of the proof

o xkK>gVk>1.
e (af)k>o is decreasing in AV.
e There exists a first index k € [0, N] such that o¥ = of*'. Hence
F(xk1) = A(ak+2)xk+1 — p(ak+?)
Ak Xk a1y = 0

and we obtain F(x¥) = F(x**1) = 0.
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Application: American options.

min <8tu - %azszaﬁsu — rsdsU + ru, U — <p(x)> =0, (3a)
te[0,T], s<€(0,Smax),

(t Smax) = 0, t S [0, T], (3b)

u(0,s) = ¢(s), x € (0, Smax)- (3c)

where o > 0 represents a volatily, r > 0 is the interest rate, Smax > 0 is large,
»(8) :== max(K — s, 0) is the "Payoff" function (K > 0 is the "strike").
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Finite Difference Scheme (Implicit Euler)

e Implicit Euler scheme:

L fut-ur Py prurt!
i i1 2a2( i _ e 2Y n+1.
min ( AT 205 p rsi—p— + U

Un+1_g]>:07 j:Oa"'7NS_17n:07"'7NT_17

UKI;H—O n:O -7NT_17
Uo_g/_ ( ) .I:07"'7NS_1

where (D2U); and (D" U); are finite differences defined by

(DPU)y = Uy — 20, + Uy, (D*U); = Uy — U,

e Stability without CFL condition.
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e For b := U" given, the problem to find x = U™ € R™ (i.e,
x = (Ugt',...,UR",)T) is equivalent to min(Bx — b, x — g) = 0, where
B=1+ AtA and Aiis the matrix of RM such that for all j=0,...,Ns—1:

1 232U/+1 2Uj—1 + Ui s, U -y

Y
2 2 Y

(AU); =

(assuming Uy, = 0).

e Bis an M-matrix. Hence (H2) is satisfied and we can apply Howard’s
algorithm and generate a sequence of approximations (x*) (for a given time
step t, of the IE scheme).

e We choose to apply Howard’s algorithm with starting point x° := U".
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Maximal bound of the total number of Howard’s

iterations
Proposition. The total number of linear systems to be solved (using algorithm
(Ho-2%) in the IE scheme, from n=0to n= N7 — 1, is bounded by Ns.

— Payoff
1 —e—Schema IE: UMn
1 —+ Schema IE: UMn+1}

T T T T T T T T T T T T T ! 7
0 20 40 60 80 100 120 140 160 180 200
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Find x € X,

min max(A*°x — b*7) = 0,
acA peB

a Howard’s algorithm: min-max problem

=] 5 = E £ DA
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« Define the functions F and G on RN by:

FA(x) := min(A*fx — b*#), and G(x):=maxF?(x) forx e RN,
acA BeEB
Algorithm (Ho-3)
Initialize 3° € BN, and iterate for k > 0:

(i) Find x* such that F#" (xk) = 0
(i) Set

BFH = argmax e gFP (x¥)

» Note that, for every k > 0, the equation Fﬂk(x) = 0 is a min-problem. The
resolution in step (i) of the above algorithm can be performed with the
Howard’s algorithm.

» The above algorithm is no more a Newton-like method !
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« Define the functions F and G on RN by:

FA(x) := min(A*fx — b*#), and G(x):=maxF?(x) forx e RN,
acA BeEB
Algorithm (Ho-3) Let (7x)x<o be in R™.
Initialize 5° € BN, and iterate for k > 0:

(i) Find x* such that IFZ* (xk)]| < i
(if) Set

BFH = argmax e gFP (x¥)

» Note that, for every k > 0, the equation Fﬂk(x) = 0 is a min-problem. The
resolution in step (i) of the above algorithm can be performed with the
Howard’s algorithm.

» The above algorithm is no more a Newton-like method !
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Theorem Assume the monotonicity property of the matrices. Let (7x)«>0 be a
sequence of R*, with ", 7« < oc. Then the sequence of iterates (x¥) given
by Algorithm Ho-3 converges to the unique solution x* of G(x*) = 0.
Furthermore, we have the lower bound estimate

k>x*_C ithC:= ma B 1. 4
Xt > x Nk, Wi aeAN,ﬁXEBNH (o, B) | (4)
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Figure: PSOR (left, with k = 200 iterations) and Howard'’s algorithm (right, with kK = 14
iterations; 88 linear systems) for the double obstacle problem with N = 99. Values U/

are plotted vs. s;.
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... many thanks for your attention!

=] 5 = E acy
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