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Here-and-now variables

• Asking feasibility for any future realization of
uncertainty can be too restrictive.

• Depending on the data, extreme rare events may exist,
and they can make the set of a.s. feasible points empty.

Two alternatives:

• To define a model for which extreme events do not
constrain “too much” the a.s. feasible points.

A model with recourse

• To consider points that are feasible with only some
probability level.

A model with chance constraints



Models with recourse

In the oil production problem, suppose the refinery agrees
with the distribution company in paying a penalty if there is a
shortage in production.

The penalty is the price the distribution company pays if it
has to buy the missing gasoline directly in the market.

The amount of the penalty can be determined after observing
the realization of uncertainty (the eventual production of gas
of the refinery and the level of demand from the clients).

The corresponding recourse function measures the constraint
violation, and it is a function of wait-and-see variables.

The production plan of the refinery is still a here-and-now
variable.



Models with recourse

Consider the random vector ξ= (η1,η2,ζ1,ζ2) and the
random variables

• h1(ξ) = 180+ζ1 and h2(ξ) = 162+ζ2, (demand)

• α(ξ) = 2+η1 and β(ξ) = 3.4−η2, (productivity)

The constraints, for an event ξ, have the expression

x1 +x2 ≤ 100
α(ξ)x1 +6x2 ≥ h1(ξ) (demand)

3x1 +β(ξ)x2 ≥ h2(ξ) (demand)

x1 ,x2 ≥ 0

Lack of feasibility comes from demand satisfaction constraints



Models with recourse

Instead of asking feasibility for all events, we can allow
shortages, charging a penalty for constraint violation

For each event ξ we introduce two slack variables, y1(ξ) and
y2(ξ), representing unsatisfied demand. Constraint set:

x1 +x2 ≤ 100
α(ξ)x1 +6x2 +y1(ξ) ≥ h1(ξ)
3x1 +β(ξ)x2 +y2(ξ) ≥ h2(ξ)

x1 ,x2 ≥ 0, y1(ξ) ,y2(ξ) ≥ 0

Remark: The variables y1(ξ) and y2(ξ) are of the
wait-and-see type.



Models with recourse

x1 +x2 ≤ 100
α(ξ)x1 +6x2 +y1(ξ) ≥ h1(ξ)
3x1 +β(ξ)x2 +y2(ξ) ≥ h2(ξ)

x1 ,x2 ≥ 0, y1(ξ) ,y2(ξ) ≥ 0

For any point (x1,x2) that satisfies the deterministic capacity
constraint, there are wait-and-see variables that make the
point feasible for the demand constraint. So asking for a.s.
feasible points is not a restrictive conditiona

aa.s. stands for almost sure: the relation holds for all ξ, except for a set of null
measure



Models with recourse

Suppose shortage cost is 7y1(ξ)+12y2(ξ) and consider a
fixed event ξ̃. The (deterministic) LP is

min 2x1+3x2+7y1(ξ̃)+12y2(ξ̃)

x1 +x2 ≤ 100
α(ξ̃)x1 +6x2 +y1(ξ̃) ≥ h1(ξ̃)
3x1 +β(ξ̃)x2 +y2(ξ̃) ≥ h2(ξ̃)

x1 ,x2 ≥ 0, y1(ξ̃) ,y2(ξ̃) ≥ 0

Now, among all feasible points (x1,x2), we need to choose
one, before any future event takes place, that is satisfactory
according to some criterion.



Models with recourse

Question: having chosen the values (x1,x2), what can I
expect in future when the uncertain event takes place?



Models with recourse

Question: having chosen the values (x1,x2), what can I
expect in future when the uncertain event takes place?
For one future event ξ̃, given the decision (x1,x2),

C(x1,x2, ξ̃) :=



min 2x1+3x2+7y1(ξ̃)+12y2(ξ̃)

x1 +x2 ≤ 100
α(ξ̃)x1 +6x2 +y1(ξ̃) ≥ h1(ξ̃)
3x1 +β(ξ̃)x2 +y2(ξ̃) ≥ h2(ξ̃)

x1 ,x2 ≥ 0, y1(ξ̃) ,y2(ξ̃) ≥ 0

is the optimal cost, a random variable if we let ξ vary.
We need to encompass all possible realizations of ξ



Models with recourse

Given (x1,x2), as a function of ξ, C(x1,x2,ξ) is random and
describes the optimal cost associated with realizations of ξ.



Models with recourse

Given (x1,x2), as a function of ξ, C(x1,x2,ξ) is random and
describes the optimal cost associated with realizations of ξ.
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Models with recourse

One criterion for choosing the “best” (x1,x2) is to use a
“functional”

M :Z → R

that measures the “goodness of random variables” according
to our perception (conservative, risk neutral, risk averse)

The subspace Z is such that C(x1,x2, ·) ∈Z for all x1,x2,

The “best” (x1,x2) is (x̄1, x̄2) solving

min
x1,x2

M
[
C(x1,x2, ·)

]



Models with recourse

One criterion for choosing the “best” (x1,x2) is to use a
“functional”

M :Z → R

that measures the “goodness of random variables” according
to our perception (conservative, risk neutral, risk averse)

The subspace Z is such that C(x1,x2, ·) ∈Z for all x1,x2,

The “best” (x1,x2) is (x̄1, x̄2) solving

min
x1,x2

M
[
C(x1,x2, ·)

]
An important example is to choose M= E , an appropriate
measure for repetitive events (criterion neutral w.r.t. to risk)



Models with recourse

It turns out that minx1,x2E
[
C(x1,x2, ·)

]
is equivalent to

min 2x1+3x2+E[7y1(ξ)+12y2(ξ)]

x1 +x2 ≤ 100
α(ξ)x1 +6x2 +y1(ξ) ≥ h1(ξ)
3x1 +β(ξ)x2 +y2(ξ) ≥ h2(ξ)

x1 ,x2 ≥ 0, y1(ξ) ,y2(ξ) ≥ 0


a.s.[ξ]

For general distributions of ξ we have that

• Computing E
[
7y1(ξ)+12y2(ξ)

]
can be very expensive.

• There may be infinitely many constraints.



Models with recourse

In (very) important special cases, ξ has a finite support:
ξ ∈ {ξ1,ξ2, . . . ,ξK}, where ξi has probability pi.

min 2x1+3x2+
∑K
i=1pi[7y1(ξi)+12y2(ξi)]

x1 +x2 ≤ 100
α(ξi)x1 +6x2 +y1(ξi) ≥ h1(ξi)

3x1 +β(ξi)x2 +y2(ξi) ≥ h2(ξi)
x1 ,x2 ≥ 0, y1(ξi) ,y2(ξi) ≥ 0


i= 1, . . . ,K

The number wait-and-see variables and constraints can grow
fast with the number of scenarios. The set {ξ1, . . . ,ξK} can be
a discrete version of a continuous ξ.



The impact of scenario representation:

dimensionality explosion

Consider uncertainties only on the right-hand-side (RHS):

min 2x1+3x2+
∑K
i=1pi[7y1(ξi)+12y2(ξi)]

x1 +x2 ≤ 100
x1 +6x2 +y1(ξi) ≥ h1(ξi) , i= 1, . . . ,K
3x1 +x2 +y2(ξi) ≥ h2(ξi) , i= 1, . . . ,K

x1 ,x2 ≥ 0, y1(ξi) ,y2(ξi) ≥ 0, i= 1, . . . ,K

• Fifteen realizations were drawn for h1(ξ) and h2(ξ).

• A total of K= 152 = 225 scenarios were considered.

• We obtain an LP with 2+225∗2= 552 variables.



The impact of scenario representation:

dimensionality explosion

From a toy LP with 2 variables we got a SLP with 552 variables
after a quite crude approximation of uncertainty

min 2x1+3x2+
∑K
i=1pi[7y1(ξi)+12y2(ξi)]

x1 +x2 ≤ 100
x1 +6x2 +y1(ξi) ≥ h1(ξi) , i= 1, . . . ,K
3x1 +x2 +y2(ξi) ≥ h2(ξi) , i= 1, . . . ,K

x1 ,x2 ≥ 0, y1(ξi) ,y2(ξi) ≥ 0, i= 1, . . . ,K

• Fifteen realizations were drawn for h1(ξ) and h2(ξ).

• A total of K= 152 = 225 scenarios were considered.



The impact of scenario representation:

reliability

min 2x1+3x2+
∑K
i=1pi[7y1(ξi)+12y2(ξi)]

x1 +x2 ≤ 100
x1 +6x2 +y1(ξi) ≥ h1(ξi) , i= 1, . . . ,225
3x1 +x2 +y2(ξi) ≥ h2(ξi) , i= 1, . . . ,225

x1 ,x2 ≥ 0, y1(ξi) ,y2(ξi) ≥ 0, i= 1, . . . ,225

An optimal solution for this LP is x̄225 = (38.539,20.539).
Its optimal value is C(x̄225) = 140.747 and the cost of
producing x̄225 is C1 = f(x̄225) = 138.694.



The impact of scenario representation:

reliability

min 2x1+3x2+
∑K
i=1pi[7y1(ξi)+12y2(ξi)]

x1 +x2 ≤ 100
x1 +6x2 +y1(ξi) ≥ h1(ξi) , i= 1, . . . ,225
3x1 +x2 +y2(ξi) ≥ h2(ξi) , i= 1, . . . ,225

x1 ,x2 ≥ 0, y1(ξi) ,y2(ξi) ≥ 0, i= 1, . . . ,225

An optimal solution for this LP is x̄225 = (38.539,20.539).

Its optimal value is C(x̄225) = 140.747 and the cost of
producing x̄225 is C1 = f(x̄225) = 138.694.

This is a feasible point for the above LP.



The impact of scenario representation:

reliability

min 2x1+3x2+
∑K
i=1pi[7y1(ξi)+12y2(ξi)]

x1 +x2 ≤ 100
x1 +6x2 +y1(ξi) ≥ h1(ξi) , i= 1, . . . ,225
3x1 +x2 +y2(ξi) ≥ h2(ξi) , i= 1, . . . ,225

x1 ,x2 ≥ 0, y1(ξi) ,y2(ξi) ≥ 0, i= 1, . . . ,225

An optimal solution for this LP is x̄225 = (38.539,20.539).

Its optimal value is C(x̄225) = 140.747 and the cost of
producing x̄225 is C1 = f(x̄225) = 138.694.

This is a feasible point for the above LP.

What is the probability
for x̄225 to be feasible
for the “true problem”
(ξ continuous)?



The impact of scenario representation:

reliability

Assuming the random vector h(ξ) is normally distributed,
the answer can be obtained by employing the Matlab function
mvncdf.

P

 2x̄2251 +6x̄2252 ≥ h1(ξ)

3x̄2251 +3x̄2252 ≥ h2(ξ)

= 0.912

The Matlab command is:

mvncdf([2 6;3 3]∗ x̄, [180; 162], [122 0;0 92])



The impact of scenario representation:

reliability
Assuming the random vector h(ξ) is normally distributed,
the answer can be obtained by employing the Matlab function
mvncdf.

P

 2x̄2251 +6x̄2252 ≥ h1(ξ)

3x̄2251 +3x̄2252 ≥ h2(ξ)

= 0.912

The Matlab command is:

mvncdf([2 6;3 3]∗ x̄, [180; 162], [122 0;0 92])

We can do the same for the deterministic (no ξ), and the
worst-case solutions.



Assessing quality of the solution

Model x̄1 x̄2 f(x̄) Feasibility

Deterministic 36 18 126 0.250

Worst-case 48.018 25.548 172.681 1

Recourse 38.539 20.539 138.694 0.912

• Deterministic: gives the cheapest and less reliable decision, it has
only 25% of chance to be feasible. (This makes sense: uncertainty
was simply ignored!)

• Worst-case is expensive (172.681) but feasible for all future
realization

• Recourse: decision not too expensive, with reasonable probability of
being feasible. Reliability can only be incresed at the expense of
increasing the number of scenarios.



Limitations of models with recourse

A stochastic program with recourse seems a good model
for the oil production example.

In this problem, “recourse” is always a possibility: if shortage
happens, the company can buy (at more expensive prices)
crude oil in the market to produce gasoline to meet the
demand. It can even buy gasoline, in fact.

However, there are applications in which such “recourse”
simply does not exist!



Limitations of models with recourse

A stochastic program with recourse seems a good model
for the oil production example.

In this problem, “recourse” is always a possibility: if shortage
happens, the company can buy (at more expensive prices)
crude oil in the market to produce gasoline to meet the
demand. It can even buy gasoline, in fact.

However, there are applications in which such “recourse”
simply does not exist!

• There is no recourse for lost lives!
(Think of disasters caused by wrongly planned dams.)



Probabilistic models

When feasibility (regarded as safety) plays a role sometimes
more important than optimality, stochastic programs with
recourse are not even a choice.

• A formulation with probability constraints
(chance-constrained programs) is a more suitable model.

Let’s make the (non-realistic) assumption that there is no
recourse in our example: it means that shortage cannot be
covered by immediate market purchases.

• Given this premise, the aim is to find the best decision
that is at least 95% feasible for all possible realizations of
the random variables h1(ξ) and h2(ξ).



LP with joint probabilistic constraints

min 2x1+3x2

x1+x2 ≤ 100

P

 2x1+6x2 ≥ h1(ξ)

3x1+3x2 ≥ h2(ξ)

≥ 0.95
x1,x2 ≥ 0.

This problem is tractable thanks to the assumption on the
probability distribution of h(ξ).



LP with joint probabilistic constraints

min 2x1+3x2

x1+x2 ≤ 100

P

 2x1+6x2 ≥ h1(ξ)

3x1+3x2 ≥ h2(ξ)

≥ 0.95
x1,x2 ≥ 0.

This problem is tractable thanks to the assumption on the
probability distribution of h(ξ).

Solving our chance-constrained program by a specialized
method gives x̄P = (37.758,21698), with f(x̄P) = 140.616,
noting that x̄P has 95% of chances of being feasible.



Assessing quality of the solution

Our table then becomes:

Model x̄1 x̄2 f(x̄) Feasibility

Deterministic 36 18 126 0.250

Worst-case 48.018 25.548 172.681 1

Recourse 38.539 20.539 138.694 0.912

Chance-Constraints 37.758 21.698 140.616 0.950

Note that the cost f(x̄) is slightly increased compared with
the Deterministic solution if we observe the drastic increase
of reliability.



Probabilistic models, or chance-constrained

programs 
min f(x)

s.t. x ∈ X
P[g(x)≥ ξ]≥ p.

In general very challenging optimization problems:

• computing numerically P is only possible for a few classes of
probability distributions

• the feasible set is in general non convex

• when the random variable is discrete the problem becomes a large
scale mixed-integer programming problem, exceeding capability of
standard MINLP solvers



Probabilistic models, or chance-constrained

programs 
min f(x)

s.t. x ∈ X
P[g(x)≥ ξ]≥ p.

In general very challenging optimization problems:

• computing numerically P is only possible for a few classes of
probability distributions

• the feasible set is in general non convex

• when the random variable is discrete the problem becomes a large
scale mixed-integer programming problem, exceeding capability of
standard MINLP solvers

Like for SP with recourse,
solving chance-constrained problems
requires specialized methods



Homework

For the oil production example, considering RHS uncertainty
only of the form

• h1 = 180+ζ1 com ζ1 ∼N (0,16).

• h2 = 163+ζ2 com ζ2 ∼N (0,9).

use Matlab/Octave to generate K demand scenarios and solve
the models

1. Deterministic

2. Worst-case

3. Scenario Analysis

4. Chance-constrained



5. With recourse, considering that the gasoline bought in
case of shortage costs 7 and 12.

Try your models first with K= 1 and then run the code with
K= 10 and K= 100 scenarios.

Compare the different optimal values and solutions found.

To assess the quality solution, compute the reliability of each
x̄, using the Matlab function mvncdf.


