ALGORITHMS FOR TWO-STAGE SP: A PRIMER ON NONSMOOTH OPTIMIZATION

Claudia Sagastizábal

BAS Lecture 9, April 7, 2016, IMPA

Set YouTube resolution to 480p

for best viewing

Two-Stage LP with RCR^a, $\Omega = \{\omega^1, ..., \omega^S\}$

$$\min_{\mathbf{x}\in\mathbf{X}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + \phi(\mathbf{x}) \quad \text{for} \quad \mathbf{X} := \{\mathbf{x} \ge \mathbf{0} : \mathbf{A}\mathbf{x} = \mathbf{b}\},$$

where $\phi(\mathbf{x}) = \mathbb{E}\left[Q(\mathbf{x},\xi)\right] = \sum_{s=1}^{S} p_{s}Q(\mathbf{x},\xi^{s}) \quad \text{and}$
$$Q(\mathbf{x},\xi^{s}) = \begin{cases} \min q^{s} T y \\ s.t. \quad W^{s}y = h^{s} - T^{s}x \\ y \ge 0 \end{cases} \quad = \begin{cases} \max \pi^{\mathsf{T}}(h^{s} - T^{s}x) \\ s.t. \quad W^{s} T \pi \le q^{s} \end{cases}$$

$$\partial \phi(\mathbf{x}^{\mathbf{k}}) = -\sum_{s=1}^{s} p_{s} \mathsf{T}^{s \top} \arg \max \left\{ \pi^{\mathsf{T}}(\mathfrak{h}^{s} - \mathsf{T}^{s} \mathbf{x}^{\mathbf{k}}) : \pi \in \Pi(\mathfrak{q}^{s}) \right\}$$

^anext lecture: without Relative Complete Recourse (infeasibility!)

Two-Stage LP with RCR^a, $\Omega = \{\omega^1, ..., \omega^S\}$

$$\begin{split} \min_{\mathbf{x}\in\mathbf{X}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + \boldsymbol{\phi}(\mathbf{x}) & \text{for} \quad \mathbf{X} := \{\mathbf{x} \ge \mathbf{0} : \mathbf{A}\mathbf{x} = \mathbf{b}\}, \\ \text{where } \boldsymbol{\phi}(\mathbf{x}^{\mathbf{k}}) = \mathbb{E}\left[Q(\mathbf{x}^{\mathbf{k}}, \xi)\right] = \sum_{s=1}^{S} p_{s}Q(\mathbf{x}^{\mathbf{k}}, \xi^{s}) & \text{and} \\ \\ Q(\mathbf{x}^{\mathbf{k}}, \xi^{s}) = \begin{cases} \min \quad q^{s \top}y \\ \text{s.t.} \quad W^{s}y = \mathbf{h}^{s} - \mathsf{T}^{s}\mathbf{x}^{\mathbf{k}} \\ y \ge \mathbf{0} \end{cases} & \text{s.t.} \quad W^{s \top}\pi \le q^{s} \end{split}$$

$$\partial \phi(\mathbf{x}^{\mathbf{k}}) = -\sum_{s=1}^{s} p_{s} \mathsf{T}^{s \top} \arg \max \left\{ \pi^{\top}(\mathfrak{h}^{s} - \mathsf{T}^{s} \mathbf{x}^{\mathbf{k}}) : \pi \in \Pi(\mathfrak{q}^{s}) \right\}$$

^anext lecture: without Relative Complete Recourse (infeasibility!)

Two-Stage LP with RCR, $\Omega = \{\omega^1, \dots, \omega^S\}$

$$\begin{split} \min_{\mathbf{x}\in\mathbf{X}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + \boldsymbol{\phi}(\mathbf{x}) & \text{for} \quad \mathbf{X} := \{\mathbf{x} \ge \mathbf{0} : \mathbf{A}\mathbf{x} = \mathbf{b}\}, \\ \text{where } \boldsymbol{\phi}(\mathbf{x}^{\mathbf{k}}) = \mathbb{E}\left[Q(\mathbf{x}^{\mathbf{k}}, \xi)\right] = \sum_{s=1}^{S} p_{s}Q(\mathbf{x}^{\mathbf{k}}, \xi^{s}) & \text{and} \\ Q(\mathbf{x}^{\mathbf{k}}, \xi^{s}) = \begin{cases} \min \ q^{s \top}y \\ \text{s.t. } W^{s}y = \mathbf{h}^{s} - \mathbf{T}^{s}\mathbf{x}^{\mathbf{k}} \\ y \ge 0 \end{cases} & = \begin{cases} \max \ \pi^{\mathsf{T}}(\mathbf{h}^{s} - \mathbf{T}^{s}\mathbf{x}^{\mathbf{k}}) \\ \text{s.t. } W^{s \top}\pi \le q^{s} \\ \text{s.t. } W^{s \top}\pi \le q^{s} \end{cases} \end{split}$$

$$\partial \phi(\mathbf{x}^{\mathbf{k}}) = -\sum_{s=1}^{S} p_s \mathsf{T}^{s \top} \arg \max \left\{ \pi^{\mathsf{T}}(\mathbf{h}^s - \mathsf{T}^s \mathbf{x}^{\mathbf{k}}) : \pi \in \Pi(\mathbf{q}^s) \right\}$$

Evaluating
$$\phi(x^k) = \sum_{s=1}^{S} p_s \pi^{s,k \top}(h^s - T^s x^k)$$

Evaluating
$$\phi(x^k) = \sum_{s=1}^{S} p_s \pi^{s,k \top} (h^s - T^s x^k)$$

gives for free a subgradient $\gamma^k = -\sum_{s=1}^{S} p_s T^{s \top} \pi^{s,k} \in \partial \phi(x^k)$

Evaluating
$$\phi(\mathbf{x}^k) = \sum_{s=1}^{S} p_s \pi^{s,k \top} (h^s - T^s \mathbf{x}^k)$$

gives for free a subgradient $\gamma^k = -\sum_{s=1} p_s T^{s \ \top} \pi^{s,k} \in \partial \varphi(x^k)$ and

the linearization

$$\geq \phi(x^k) + \gamma^{k \top}(x - x^k)$$

=
$$\sum_{s=1}^{S} p_s \pi^{s,k \top}(h^s - T^s x^k) - \sum_{s=1}^{S} p_s \pi^{s,k \top} T^s(x - x^k)$$

=
$$\sum_{s=1}^{S} p_s \pi^{s,k \top}(h^s - T^s x)$$

Evaluating
$$\phi(x^k) = \sum_{s=1}^{S} p_s \pi^{s,k \top} (h^s - T^s x^k)$$

gives for free a subgradient $\gamma^k = -\sum_{s=1}^{S} p_s T^{s \top} \pi^{s,k} \in \partial \phi(x^k)$ and
the linearization
 $\phi(x) \ge \phi(x^k) + \gamma^{k \top} (x - x^k)$
 $= \sum_{s=1}^{S} p_s \pi^{s,k \top} (h^s - T^s x^k) - \sum_{s=1}^{S} p_s \pi^{s,k \top} T^s (x - x^k)$
 $= \sum_{s=1}^{S} p_s \pi^{s,k \top} (h^s - T^s x)$

Evaluating φ at x^k

 $\min_{x \in X} f(x)$ convex nonsmooth knowing f(x) and $g(x) \in \partial f(x)$ (one)

Computational NSO: what does it mean?

For the unconstrained^a problem

 $\min f(x)$,

where f is convex but not differentiable at some points

 $^{a}X = \mathbb{R}^{n}$ today

Computational NSO: what does it mean?

For the unconstrained problem

$\min f(x)$,

where f is convex but not differentiable at some points,

we shall define **algorithms** based on information provided by an oracle or "black box"

An example

An example

An example

An example

An example

An example

An example

An example

repeat until ...??

An algorithm

is a sequence of steps

that are repeated

until satisfaction

An algorithm

is a sequence of steps

that are repeated

until satisfaction

of a stopping test

Back to Computational NSO

For the unconstrained problem

where f is convex but not differentiable at some points,

we look for algorithms based on information provided by an oracle or "black box"

An example of a convex nonsmooth function

 $\partial f(x) = \{\nabla f(x)\}$

= {slopes of linearizations supporting f, tangent at x}

An example of a convex nonsmooth function

 $\begin{aligned} \partial f(x) &= & \{g \in {\rm I\!R}^n : f(y) \geq f(x) + g^\top(y - x) \text{ for all } y \} \\ & f & x \end{aligned}$

An example of a convex nonsmooth function

 $\partial f(x) = \{g \in \mathbb{R}^n : f(y) \ge f(x) + g^{T}(y - x) \text{ for all } y\}$

= {slopes of linearizations supporting f, tangent at x}
Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth stopping test fails: $|\nabla f(x^k)| \leq TOL$ $(\leftrightarrow |g(x^k)| \leq TOL)$

Finite difference approximations **fail** (no automatic differentiation)

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth stopping test fails: $|\nabla f(x^k)| \leq TOL$ $(\leftrightarrow |g(x^k)| \leq TOL)$

Finite difference approximations fail

Linesearches get trapped in kinks and fail

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth stopping test fails: $|\nabla f(x^k)| \leq TOL$ $(\leftrightarrow |g(x^k)| \leq TOL)$

Finite difference approximations fail

Linesearches get trapped in kinks and fail

 $-g(x^k)$ may **not** provide descent

Smooth optimization methods do not work

$$f(x) = |x|$$

$$|\nabla f(x^k)| = 1, \forall x \neq 0 \quad \partial f(0) = [-1, 1]$$

Smooth stopping test fails: $|\nabla f(x^k)| \leq TOL$ $(\leftrightarrow |g(x^k)| \leq TOL)$

Finite difference approximations fail Linesearches get trapped in kinks and fail $-g(x^k)$ may not provide descent '

We look for algorithms based on information provided by an oracle

x $p(x) \in \partial f(x)$ endowed with reliable stopping tests

We look for algorithms based on information provided by an oracle

We look for algorithms based on information provided by an oracle

Subgradient Methods

We look for algorithms based on information provided by an oracle

Subgradient Methods

- **0** Choose x^1 and set k = 1.
- 1 Call the oracle at x^k .
- 2 Compute $x^{k+1} = x^k t_k \frac{g(x^k)}{\|g(x^k)\|}$ for a suitable stepsize $t_k > 0$.
- 3 Make k = k + 1 and loop to 1.

We look for algorithms based on information provided by an oracle

Subgradient Methods

- **0** Choose x^1 and set k = 1.
- 1 Call the oracle at x^k .
- 2 Compute $x^{k+1} = x^k t_k \frac{g(x^k)}{\|g(x^k)\|}$ for a suitable stepsize $t_k > 0$.
- 3 Make k = k + 1 and loop to 1.

Is this a good "recipe"?

- **0** Choose x^1 and set k = 1.
- 1 Call the oracle at x^k .
- 2 Compute $x^{k+1} = x^k t_k \frac{g(x^k)}{\|g(x^k)\|}$ for a suitable stepsize $t_k > 0$.
- 3 Make k = k + 1 and loop to 1.

SG methods are the algorithmic version of this road sign

- **0** Choose x^1 and set k = 1.
- 1 Call the oracle at x^k .
- 2 Compute $x^{k+1} = x^k t_k \frac{g(x^k)}{\|g(x^k)\|}$ for a suitable stepsize $t_k > 0$.
- 3 Make k = k + 1 and loop to 1.

SG methods are the algorithmic version of this road sign

... something is missing!!!

- **0** Choose x^1 and set k = 1.
- 1 Call the oracle at x^k .
- 2 Compute $x^{k+1} = x^k t_k \frac{g(x^k)}{\|g(x^k)\|}$ for a suitable stepsize $t_k > 0$.
- 3 Make k = k + 1 and loop to 1.

SG methods are the algorithmic version of this road sign

- **0** Choose x^1 and set k = 1.
- 1 Call the oracle at x^k .
- 2 Compute $x^{k+1} = x^k t_k \frac{g(x^k)}{\|g(x^k)\|}$ for a suitable stepsize $t_k > 0$.
- 3 Make k = k + 1 and loop to 1.

SG methods are the algorithmic version of this road sign

Non-monotone!

Non-monotone functional values, but converges because distance to solution set decreases for $\sum t_k = +\infty, \sum t_k^2 < +\infty$

Non-monotone functional values, but converges because distance to solution set decreases for $\sum t_k = +\infty, \sum t_k^2 < +\infty$

Constrained case dealt with by projecting onto X: reasonable for simple X only

Non-monotone functional values, but converges because distance to solution set decreases for $\sum t_k = +\infty, \sum t_k^2 < +\infty$ Lacks a stopping test

- Non-monotone functional values, but converges because distance to solution set decreases for $\sum t_k = +\infty, \sum t_k^2 < +\infty$ Lacks a stopping test
- ... does not use all available information

Non-monotone functional values, but converges because distance to solution set decreases for $\sum t_k = +\infty, \sum t_k^2 < +\infty$ Lacks a stopping test

... does not use all available information

- Non-monotone functional values, but converges because distance to solution set decreases for $\sum t_k = +\infty, \sum t_k^2 < +\infty$ Lacks a stopping test
- ... does not use all available information

SG methods are like caipirinha without cachaça

We look for algorithms based on information provided by an oracle

x $g(x) \in \partial f(x)$ endowed with reliable stopping tests

We look for algorithms based on information provided by an oracle

f(x) endowed with reliable stopping tests $g(x) \in \partial f(x)$

Black box information defines linearizations

We look for algorithms based on information provided by an oracle

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a **model M** of the function f.

The model is used to define iterates and to put in place a reliable stopping test

We look for algorithms based on information provided by an oracle

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a **model** M of the function f.

$$x^{i} \longrightarrow f^{i} = f(x^{i})$$

 $g^{i} = g(x^{i})$

$$f^i + g^{i \top}(x - x^i)$$

We look for algorithms based on information provided by an oracle

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a **model** M of the function f.

$$x^{i}$$
 \rightarrow \mathbf{M} $<$ $f^{i} = f(x^{i})$
 $g^{i} = g(x^{i})$ \Longrightarrow $\mathbf{M}(x) = \max_{i} \{ f^{i} + g^{i \top}(x - x^{i}) \}$

We look for algorithms based on information provided by an oracle

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a **model** M of the function f.

$$\mathbf{x}^{i} \quad \longrightarrow \quad \mathbf{f}^{i} = \mathbf{f}(\mathbf{x}^{i}) \\ g^{i} = g(\mathbf{x}^{i}) \quad \implies \mathbf{M}(\mathbf{x}) = \max_{i} \{ \mathbf{f}^{i} + g^{i \top}(\mathbf{x} - \mathbf{x}^{i}) \}$$
(just an example, many other models are possible)
To minimize f (unavailable in an explicit manner), minimize its model $\mathbf{M}(x) = \max_{i} \left\{ f^{i} + g^{i \top}(x - x^{i}) \right\}$

Improve the model at each iteration

To minimize f (unavailable in an explicit manner), minimize its model $\mathbf{M}(x) = \max_{i} \left\{ f^{i} + g^{i \top}(x - x^{i}) \right\}$

Improve the model at each iteration:

To minimize f (unavailable in an explicit manner), minimize its model $\mathbf{M}(x) = \max_{i} \left\{ f^{i} + g^{i \top}(x - x^{i}) \right\}$

Improve the model at each iteration:

$$\begin{split} \mathbf{M}_{k+1}(x) &= \max_{i \leq k+1} \left\{ \mathsf{f}^i + \mathsf{g}^{i^{\top}}(x - x^i) \right\} \\ &= \max \left(\mathbf{M}_k(x), \mathsf{f}^{k+1} + \mathsf{g}^{k+1^{\top}}(x - x^{k+1}) \right) \\ & \text{ where } x^{k+1} \text{ minimizes } \mathbf{M}_k \end{split}$$

Instead of $x^* \in \arg\min f(x)$ at one shot

To minimize f (unavailable in an explicit manner), minimize its model $\mathbf{M}(\mathbf{x}) = \max_{i} \left\{ f^{i} + g^{i \top}(\mathbf{x} - \mathbf{x}^{i}) \right\}$

Improve the model at each iteration:

$$\begin{split} \mathbf{M}_{k+1}(x) &= \max_{i \leq k+1} \left\{ \mathsf{f}^i + \mathsf{g}^{i^{\top}}(x - x^i) \right\} \\ &= \max \left(\mathbf{M}_k(x), \mathsf{f}^{k+1} + \mathsf{g}^{k+1^{\top}}(x - x^{k+1}) \right) \\ & \text{ where } x^{k+1} \text{ minimizes } \mathbf{M}_k \end{split}$$

 $\begin{array}{ll} \mbox{Instead of} & x^* \in \arg\min f(x) & \mbox{ at one shot,} \\ & x^{k+1} \in \arg\min M_k(x) & \mbox{iteratively} \end{array}$

Artificial bounding at least for the first iterations

 $\{\mathbf{M}_k(\mathbf{x}^{k+1})\}$ increases

 $\{\mathbf{M}_k(x^{k+1})\}$ increases but not necessarily the functional values: $f(x^5) > f(x^4)$

{ $\mathbf{M}_k(\mathbf{x}^{k+1})$ } increases but not necessarily the functional values: $f(\mathbf{x}^5) > f(\mathbf{x}^4)$. Stopping test measures $\delta_k := f(\mathbf{x}^k) - \mathbf{M}_{k-1}(\mathbf{x}^k)$

- **0** Choose x^1 and set k = 1.
- 1 Call the oracle at x^k .
- 2 Compute $x^{k+1} \in arg \min_X \mathbf{M}_k(x)$

3
$$\mathbf{M}_{k+1}(\cdot) = \max\left(\mathbf{M}_{k}(\cdot), \mathbf{f}^{k} + \mathbf{g}^{k\top}(\cdot - \mathbf{x}^{k})\right), k = k+1, \text{ loop to } 1.$$

- **0** Choose x^1 and set k = 1.
- 1 Call the oracle at x^k If $f(x^k) M_{k-1}(x^k) \le tol$ STOP
- 2 Compute $x^{k+1} \in \arg \min_X \mathbf{M}_k(x)$
- **3** $\mathbf{M}_{k+1}(\cdot) = \max\left(\mathbf{M}_{k}(\cdot), \mathbf{f}^{k} + \mathbf{g}^{k\top}(\cdot \mathbf{x}^{k})\right), k = k+1, \text{ loop to } 1.$

CP methods are an improved algorithmic version of the Aussie sign

