
ALGORITHMS FOR TWO-STAGE SP:
A PRIMER ON NONSMOOTH

OPTIMIZATION

Claudia Sagastizábal

BAS Lecture 9, April 7, 2016, IMPA

Set YouTube resolution to
480p

for best viewing

Two-Stage LP with RCRa, Ω= {ω1, . . . ,ωS}

min
x∈X

c>x+φ(x) for X := {x≥ 0 : Ax = b} ,

where φ(xk)=E
[
Q(xk,ξ)

]
=

S∑
s=1

psQ(xk,ξs) and

Q(xk,ξs)=

min qs >y

s.t. Wsy= hs−T sxk

y≥ 0

=

 max π>(hs−T sxk)

s.t. Ws >π≤ qs

∂φ(xk) = −

S∑
s=1

psT
s > argmax

{
π>(hs−T sxk) : π ∈ Π(qs)

}
anext lecture: without Relative Complete Recourse (infeasibility!)

Two-Stage LP with RCRa, Ω= {ω1, . . . ,ωS}

min
x∈X

c>x+φ(x) for X := {x≥ 0 : Ax = b} ,

where φ(xk)=E
[
Q(xk,ξ)

]
=

S∑
s=1

psQ(xk,ξs) and

Q(xk,ξs)=

min qs >y

s.t. Wsy= hs−T sxk

y≥ 0

=

 max π>(hs−T sxk)

s.t. Ws >π≤ qs

∂φ(xk) = −

S∑
s=1

psT
s > argmax

{
π>(hs−T sxk) : π ∈ Π(qs)

}
anext lecture: without Relative Complete Recourse (infeasibility!)

Two-Stage LP with RCR, Ω= {ω1, . . . ,ωS}

min
x∈X

c>x+φ(x) for X := {x≥ 0 : Ax = b} ,

where φ(xk)=E
[
Q(xk,ξ)

]
=

S∑
s=1

psQ(xk,ξs) and

Q(xk,ξs)=

min qs >y

s.t. Wsy= hs−T sxk

y≥ 0

=

 max π>(hs−T sxk)

s.t. Ws >π≤ qs

∂φ(xk) = −

S∑
s=1

psT
s > argmax

{
π>(hs−T sxk) : π ∈ Π(qs)

}Primal solution ys,k Dual solution πs,k

Evaluating φ(xk) =
S∑
s=1

psπ
s,k >(hs−T sxk)

Evaluating φ(xk) =
S∑
s=1

psπ
s,k >(hs−T sxk)

gives for free a subgradient γk =−

S∑
s=1

psT
s >πs,k ∈ ∂φ(xk)

Evaluating φ(xk) =
S∑
s=1

psπ
s,k >(hs−T sxk)

gives for free a subgradient γk =−

S∑
s=1

psT
s >πs,k ∈ ∂φ(xk) and

the linearization

φ(x) ≥ φ(xk)+γk >(x−xk)

=

S∑
s=1

psπ
s,k >(hs−T sxk)−

S∑
s=1

psπ
s,k >T s(x−xk)

=

S∑
s=1

psπ
s,k >(hs−T sx)

Evaluating φ(xk) =
S∑
s=1

psπ
s,k >(hs−T sxk)

gives for free a subgradient γk =−

S∑
s=1

psT
s >πs,k ∈ ∂φ(xk) and

the linearization

φ(x) ≥ φ(xk)+γk >(x−xk)

=

S∑
s=1

psπ
s,k >(hs−T sxk)−

S∑
s=1

psπ
s,k >T s(x−xk)

=

S∑
s=1

psπ
s,k >(hs−T sx)

Evaluating φ at xk

xk

1s
t-

st
ag

e
pr

ob
le

m

minc>x+φ(x)

x ∈ X
and a sub-

φ(xk) gradient

Q(xk,ξ1)

Q(xk,ξS)

2n
d-

st
ag

e
su

bp
ro

bl
em

s

Evaluating φ at xk

xk

1s
t-

st
ag

e
pr

ob
le

m

minc>x+φ(x)

x ∈ X
and a sub-

φ(xk) gradient

Q(xk,ξ1)

Q(xk,ξS)

2n
d-

st
ag

e
su

bp
ro

bl
em

s

gives the linearization φ(x)≥
S∑
s=1

psπ
s,k >(hs−T sx)

Evaluating φ at xk

xk

1s
t-

st
ag

e
pr

ob
le

m

minc>x+φ(x)

x ∈ X
and a sub-

φ(xk) gradient

Q(xk,ξ1)

Q(xk,ξS)

2n
d-

st
ag

e
su

bp
ro

bl
em

s

gives the linearization φ(x)≥
S∑
s=1

psπ
s,k >(hs−T sx)

minx∈X f(x) convex nonsmooth knowing f(x) and g(x) ∈ ∂f(x) (one)

Computational NSO: what does it mean?

For the unconstraineda problem

minf(x) ,

where f is convex but not differentiable at some points

aX= IRn today

Computational NSO: what does it mean?

For the unconstrained problem

minf(x) ,

where f is convex but not differentiable at some points,

we shall define algorithms based on information provided by an
oracle or “black box”

x

f(x)

g(x) ∈ ∂f(x)

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

An example source http://comofas.com/

What do we mean by an algorithm?

What do we mean by an algorithm?

repeat until . . . ??

What do we mean by an algorithm?

An algorithm

is a sequence of steps

that are repeated

until satisfaction

What do we mean by an algorithm?

An algorithm

is a sequence of steps

that are repeated

until satisfaction

of a stopping test

Back to Computational NSO

For the unconstrained problem

minf(x) ,

where f is convex but not differentiable at some points,

we look for algorithms based on information provided by an oracle
or “black box”

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

∂f(x) = {∇f(x)}

= {slopes of linearizations supporting f, tangent at x}

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

What can be done with the oracle information?

An example of a convex nonsmooth function

∂f(x) = {g ∈ IRn : f(y)≥ f(x)+g>(y−x) for all y}

= {slopes of linearizations supporting f, tangent at x}

What can be done with the oracle information?

An example of a convex nonsmooth function

∂f(x) = {g ∈ IRn : f(y)≥ f(x)+g>(y−x) for all y}

= {slopes of linearizations supporting f, tangent at x}

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Finite difference approximations fail (no automatic differentiation)

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Finite difference approximations fail

Linesearches get trapped in kinks and fail

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Finite difference approximations fail

Linesearches get trapped in kinks and fail

−g(xk) may not provide descent

Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Finite difference approximations fail

Linesearches get trapped in kinks and fail

−g(xk) may not provide descent ‘
0 0

x2

x1

x2

x1

s

grad

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping testsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping testsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Subgradient Methods

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping testsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tk

g(xk)
‖g(xk)} for a suitable stepsize tk > 0.

3 Make k= k+1 and loop to 1.

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping testsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tk

g(xk)
‖g(xk)} for a suitable stepsize tk > 0.

3 Make k= k+1 and loop to 1.
Is this a good “recipe”?

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tk

g(xk)
‖g(xk)} for a suitable stepsize tk > 0.

3 Make k= k+1 and loop to 1.

SG methods are

the algorithmic version

of this road sign

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tk

g(xk)
‖g(xk)} for a suitable stepsize tk > 0.

3 Make k= k+1 and loop to 1.

SG methods are

the algorithmic version

of this road sign

. . . something is missing!!!

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tk

g(xk)
‖g(xk)} for a suitable stepsize tk > 0.

3 Make k= k+1 and loop to 1.

SG methods are

the algorithmic version

of this road sign

not
a go

od
rec

ipe

Subgradient Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.
2 Compute xk+1 = xk− tk

g(xk)
‖g(xk)} for a suitable stepsize tk > 0.

3 Make k= k+1 and loop to 1.

SG methods are

the algorithmic version

of this road sign

not
a go

od
rec

ipe

Non-monotone!

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for
∑
tk =+∞,

∑
t2k <+∞

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for
∑
tk =+∞,

∑
t2k <+∞

Constrained case dealt with by projecting onto X: reasonable for simple X only

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for
∑
tk =+∞,

∑
t2k <+∞

Lacks a stopping test

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for
∑
tk =+∞,

∑
t2k <+∞

Lacks a stopping test

. . . does not use all available information

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for
∑
tk =+∞,

∑
t2k <+∞

Lacks a stopping test

. . . does not use all available information

x

f(x)

g(x) ∈ ∂f(x)

Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for
∑
tk =+∞,

∑
t2k <+∞

Lacks a stopping test

. . . does not use all available information

x

f(x)

g(x) ∈ ∂f(x)

SG methods are like caipirinha without cachaça

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a model M of the function f.

The model is used to define iterates and to put in place a reliable
stopping test

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a model M of the function f.

xi
fi = f(xi)

gi = g(xi)
=⇒M(x) = maxi {fi+gi>(x−xi) }

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a model M of the function f.

xi
fi = f(xi)

gi = g(xi)
=⇒M(x) = maxi {fi+gi>(x−xi) }

How is the oracle information used?

We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a model M of the function f.

xi
fi = f(xi)

gi = g(xi)
=⇒M(x) = maxi {fi+gi>(x−xi) }

(just an example, many other models are possible)

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration:

Mk+1(x) = maxi≤k+1
{
fi+gi>(x−xi)

}
= max

(
Mk(x), f

k+1+gk+1>(x−xk+1)
)

where xk+1 minimizes Mk

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration:

Mk+1(x) = maxi≤k+1
{
fi+gi>(x−xi)

}
= max

(
Mk(x), f

k+1+gk+1>(x−xk+1)
)

where xk+1 minimizes Mk

Instead of x∗ ∈ argminf(x) at one shot

xk+1 ∈ argminMk(x) iteratively

Cutting-plane methods

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration:

Mk+1(x) = maxi≤k+1
{
fi+gi>(x−xi)

}
= max

(
Mk(x), f

k+1+gk+1>(x−xk+1)
)

where xk+1 minimizes Mk

Instead of x∗ ∈ argminf(x) at one shot,

xk+1 ∈ argminMk(x) iteratively

Cutting-plane methods

Artificial bounding at least for the first iterations

Cutting-plane methods

)(xf

1
x

X

Cutting-plane methods

)(xf

1
x

X

2
x

Cutting-plane methods

)(xf

1
x

X

2
x

3
x

Cutting-plane methods

)(xf

1
x

X

2
x

3
x

4
x

Cutting-plane methods

)(xf

1
x

X

2
x

3
x

4
x

5
x

Cutting-plane methods

{Mk(x
k+1)} increases

Cutting-plane methods

{Mk(x
k+1)} increases but not necessarily the functional values:

f(x5)> f(x4)

Cutting-plane methods

{Mk(x
k+1)} increases but not necessarily the functional values:

f(x5)> f(x4). Stopping test measures δk := f(xk)−Mk−1(x
k)

}
δ2

Cutting-plane Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.If f(xk)−Mk−1(x

k)≤ tol STOP
2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

, k= k+1, loop to 1.

Cutting-plane Methods
0 Choose x1 and set k= 1.
1 Call the oracle at xk.If f(xk)−Mk−1(x

k)≤ tol STOP
2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

, k= k+1, loop to 1.

CP methods are

an improved algorithmic version

of the Aussie sign

a bett
er

rec
ipe

