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Two-Stage LP with RCRa, Ω= {ω1, . . . ,ωS}

min
x∈X

c>x+φ(x) for X := {x≥ 0 : Ax = b} ,

where φ(xk)=E
[
Q(xk,ξ)

]
=

S∑
s=1

psQ(xk,ξs) and

Q(xk,ξs)=


min qs >y

s.t. Wsy= hs−T sxk

y≥ 0

=

 max π>(hs−T sxk)

s.t. Ws >π≤ qs

∂φ(xk) = −

S∑
s=1

psT
s > argmax

{
π>(hs−T sxk) : π ∈ Π(qs)

}
anext lecture: without Relative Complete Recourse (infeasibility!)
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Back to Computational NSO

For the unconstrained problem

minf(x) ,

where f is convex but not differentiable at some points,

we look for algorithms based on information provided by an oracle
or “black box”

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests
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Why special NSO methods?

Smooth optimization methods do not work

0

abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails: |∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)
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Smooth optimization methods do not work
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abs f(x) = |x|

|∇f(xk)| = 1, ∀x 6= 0 ∂f(0) = [−1,1]
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because distance to solution set decreases for
∑
tk =+∞,
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Subgradient Methods: why a “not-good” recipe
Non-monotone functional values, but converges

because distance to solution set decreases for
∑
tk =+∞,

∑
t2k <+∞

Lacks a stopping test

. . . does not use all available information

x

f(x)

g(x) ∈ ∂f(x)

SG methods are like caipirinha without cachaça
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We look for algorithms based on information provided by an oracle

x

f(x)

g(x) ∈ ∂f(x)

endowed with reliable stopping tests

Black box information defines linearizations

that put together create a model M of the function f.

xi
fi = f(xi)

gi = g(xi)
=⇒M(x) = maxi {fi+gi>(x−xi) }

(just an example, many other models are possible)
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Cutting-plane methods

Artificial bounding at least for the first iterations
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Cutting-plane methods

{Mk(x
k+1)} increases but not necessarily the functional values:

f(x5)> f(x4). Stopping test measures δk := f(xk)−Mk−1(x
k)

}
δ2
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0 Choose x1 and set k= 1.
1 Call the oracle at xk.If f(xk)−Mk−1(x
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2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
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)

, k= k+1, loop to 1.
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1 Call the oracle at xk.If f(xk)−Mk−1(x

k)≤ tol STOP
2 Compute xk+1 ∈ argminXMk(x)

3 Mk+1(·) = max
(

Mk(·), fk+gk>(·−xk)
)

, k= k+1, loop to 1.

CP methods are

an improved algorithmic version

of the Aussie sign

a bett
er
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