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Questions on the homework (mandatory for

PhD students)

In

• h1 = 180+ζ1 com ζ1 ∼N (0,16).

• h2 = 163+ζ2 com ζ2 ∼N (0,9).

the first parameter in the normal distribution N corresponds to the
mean. And the 2nd one, is it the standard deviation (σ) or the
variance (σ2)?



The recourse function (fixed ξ)

Under reasonable assumptions

Q(x,ξ)=


min q>y

s.t. Wy= h−Tx

y≥ 0

=


max π>(h−Tx)

s.t. π ∈ Π(q)
Π(q) = {π :W>π≤ q}

We wrote Q(x,ξ) = v(h−Tx) for suitable v and saw that

∂v(z0) = argmax
{
π>z0 : π ∈ Π

}



The subdifferential of Q(·,ξ)
Since Q(x0,ξ) = v(h−Tx0), a chain rule gives

∂Q(x0,ξ) = −T> argmax
{
π>(h−Tx0) : π ∈ Π
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The subdifferential of E[Q(·,ξ)]: ξ with finite support

K scenarios

∂E[Q(x0,ξ)] = −

K∑
k=1

pkTk > argmax
{
π>(hk −Tkx0) : π ∈ Π(qk)

}
The subdifferential of E[Q(·,ξ)]: general ξ

First concern: when is the expected recourse function
well-defined?

Answer: Q(x, ·) needs to be measurable and either the
expected surplus E[Q(x,ξ)+] or the expected shortage
E[Q(x,ξ)−] must be finite (Props. 2.6, 2.7)



A super fast introduction to measurability

What is the size of

• Intervals I[a,b] = {x ∈ IRn : ai ≤ xi ≤ bi , i= 1, . . . ,n}?
measure µ(I[a,b]) =

∏n
i=1(bi−ai)

measure µ(∪jI[aj,bj]) =
∑
jµ(I[aj,bj]) if Ij1 ∩ Ij2 = /0

• Closed bounded set A ∈ IRn?
A covering C of A is C= ∪jI[aj,bj])⊃A with Ij1 ∩ Ij2 = /0

A packing D of A is D= ∪jI[aj,bj])⊂A with Ij1 ∩ Ij2 = /0

A is measurable if infµ(C) = supµ(D)

• Closed unbounded set A ∈ IRn?
A is measurable if A∩ I[a,b] is measurable, for all intervals

• Any set in IRn?
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A super fast introduction to measurability

A is a class of measurable sets A in IRn with measure µ if

• A ∈A implies IRn\A ∈A

• Ai ∈A for i= 1, . . . implies ∪iAi ∈A

Then ∩iAi ∈A, µ(A)≥ 0, µ( /0) = 0, µ(∪iAi) =
∑
iµ(Ai) if Ai∩Aj = /0
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Measurability in an abstract spaceΩ

F is a class of measurable sets F inΩ with probability measure P

• F ∈F impliesΩ\F ∈F (Ω ∈F)

• Fi ∈F for i= 1, . . . with Fi∩Fj = /0 implies P(∪iAi) =
∑
iP(Ai)

The sets F are the events, and the triplet (Ω,F ,P) defines a
probability space

A random vector ξ :Ω→ IRn is such that for all A ∈A

ξ−1[A] = {ω : ξ(ω) ∈A} ∈F

Pξ(A) = P({ω : ξ(ω) ∈A)})



A simple probability space

Ω= { 6= qualities of a box of bananas} ξ(Ω) = {0}∪ {1/2}∪ {[1,8]}}

1. unusable

2. good for cooking

3. good for eating raw

a) appearance

b) flavour

c) fragrance
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Ω= {6= qualities of a box of bananas} ξ(Ω) =
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{0}∪ {1/2}∪ {[1,8]}

}
1. unusable ξ(ω) = 0

2. good for cooking ξ(ω) = 1
2

3. good for eating raw ξ(ω) = (1+a)(1+ t)(1+ f)

a) appearance

b) taste

c) fragrance

for a,t,f ∈ [0,1]. The random variable v helps pricing the bananas:

$$$ if v(ω) ∈ (6,8]; $$ if v(ω) ∈ (4,6]; $ if v(ω) ∈ (1,4]
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Finite first moment

Q(x, ·) needs to be measurable OK!

either the expected surplus E[Q(x,ξ)+] or the expected shortage
E[Q(x,ξ)−] must be finite: depends on recourse structure

• Fixed recourse

• Simple fixed recourse always complete

• Complete fixed recourse ≡ Π∞ = {0}

• Relatively Complete fixed recourse

Let’s study φ(x) := E(Q(x,ξ) when recourse is simple and fixed



Illustration

Consider the SLP in IR and its recourse problem
min cx

s.t. x=ω a.e.

x≥ 0

Q(x,ω) =
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min q+y++q−y−

s.t. y++y− =ω−x

y+ ,y− ≥ 0
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Illustration

Consider the SLP in IR and its recourse problem
min cx

s.t. x=ω a.e.

x≥ 0

Q(x,ω) =


min q+y++q−y−

s.t. y++y− =ω−x

y+ ,y− ≥ 0

The 2SLP is  min cx+E[Q(x,ω)]

s.t. x≥ 0

– Π(q) 6= /0 ⇐⇒ q++q− (sufficiently expensive recourse)

– when q+ = q− = 1, Q(x,ω) = |ω−x|

–Ω with finite support, E[Q(x,ω)] is convex and polyhedral, with kinks
ω ∈Ω



–Ω continuous


