
ALGORITHMS FOR TWO-STAGE SP:
IMPLEMENTATION

Claudia Sagastizábal

BAS Lecture 11, April 14, 2016, IMPA



Set YouTube resolution to
480p

for best viewing



Decomposition of 2SLP
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L-shaped method kth iteration

The 1st-stage problem has the form
minx∈X c>x+r

s.t. r≥ O−cuti(x) for i ∈ Jk−1Obj

0≥ F−cuts,i(x) for i ∈ Js,k−1Feas and s= 1, . . . ,S

We defined

O−cuti(x) =
∑S
s=1psπ

s,i >(hs−T sx) if xi ∈ domφ

F−cuts,i(x) = ηs,i >(hs−T sx) if xi 6∈ domQ(·,ξs) ,

and JkObj = {i < k : xi ∈ domφ}

Js,kFeas = {i < k : xi 6∈ domQ(·,ξs) for s= 1, . . . ,S
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L-shaped method kth iteration
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there is also a multi-cut variant



Application: Cash-Matching Problem

Over the next t= 1, . . . ,T years a company plans
to make payments dt, that will be financed by
buying i= 1, . . . ,n bonds
with known return rit and cost ci.
For a capital K and each i= 1, . . . ,n, we need to
determine xi, the number of bonds of type i to buy
today so that at the end of the horizon we
maximize our money in a manner that in no period
we are in red.



Mathematical Formulation

Introducing cumulative gains and losses

$ IN Return of bond i until time t ait =
∑t
τ=1 riτ−ci

$ OUT Payments until time t ht =
∑t
τ=1dτ−K
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Mathematical Formulation

Introducing cumulative gains and losses

$ IN Return of bond i until time t ait =
∑t
τ=1 riτ−ci

$ OUT Payments until time t ht(ω) =
∑t
τ=1 dτ −K

the problem can be written as follows:
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Mathematical Formulation
maxx

n∑
i=1

aiTxi

s.t.
n∑
i=1

aitxi ≥ ht(ω) for t= 1, . . . ,T

Difficulty: exact payments are not known in
advance, dτ and ht are random
What about a stochastic programming approach?



Mathematical Formulation
maxx

n∑
i=1

aiTxi

s.t.
n∑
i=1

aitxi ≥ ht(ω) for t= 1, . . . ,T

Difficulty: exact payments are not known in
advance, dτ and ht are random
What about a stochastic programming approach?

Let’s formulate a 2-stage model with recourse



Decision stages 6= time steps

For each i= 1, . . . ,n, we need to determine xi, the
number of bonds of type i to buy today so that at
the end of the horizon we maximize our money in a
manner that in no period we are in red.
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wait-and-see adjustements yi(ω) in the future
(t= 2)
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Model with recourse

If there is recourse of buying y(ω) at t= 2:

$ GAIN t= 1 (ri1−ci)xi

$ GAIN t≥ 2 (ri1−ci)xi+(
∑t
τ=2 riτ−ci)(xi+yi(ω))

$ OUT ht(ω) =
∑t
τ=1dτ(ω)−K



Model with recourse

If there is recourse of buying y(ω) at t= 2:

$ GAIN t= 1 (ri1−ci)xi

$ GAIN t≥ 2 (ri1−ci)xi+(
∑t
τ=2 riτ−ci)(xi+yi(ω))

= aitxi+(ait− ri1)yi(ω)

$ OUT ht(ω) =
∑t
τ=1dτ(ω)−K



Cash-matching problem: recourse model

max
n∑
i=1

aiTxi+E[
n∑
i=1

(aiT − ri1)yi(ω)]

s.t. 0≤ x≤ K and 0≤ y(ω)≤ K a.e.ω
n∑
i=1

ai1xi ≥ h1
n∑
i=1

aitxi+

n∑
i=1

(ait− ri1)yi(ω)≥ ht(ω) a.e.ω

for t= 1, . . . ,T



Preparing the implementation: data generation

function [data]=genCMData(Nscen,Resample)

data.Nscen=Nscen;data.resample=Resample;

[data]=CashMatchingData;

[data.scen,data.lb_scen,data.resample]=CMGenScen(data);



Preparing the implementation: data generation

genCMData.m

function [data]=genCMData(Nscen,Resample)

data.Nscen=Nscen;data.resample=Resample;

[data]=CashMatchingData;

[data.scen,data.lb_scen,data.resample]=CMGenScen(data);

CashMatchingData.m

n=3;T=15;K = 250000;

c = [980;970;1050];

d = 1000*[11 12 14 15 16 18 20 21 22 24 25 30 31 31 31]’;

r= [ 0 0 0

60 65 75

60 65 75

60 65 75



60 65 75

1060 65 75

0 65 75

0 65 75

0 65 75

0 65 75

0 65 75

0 1060 75

0 0 75

0 0 75

0 0 1075];

sigma = 500*[1:T]’;



A_scen = zeros(n,T);

for i=1:n

for j=1:T

s=sum(r(1:j,i));

A_scen(i,j) = s - c(i);

end

end

c_scen = A_scen(:,T);c_scen = -c_scen; %max problem

A_scen = A_scen’;

data.n=n;data.T=T;data.K=K;data.c=c;data.d=d;data.r=r;

data.sigma=sigma;data.A_scen=A_scen;data.c_scen=c_scen;

end



Oracle: your turn!

function [intercept,slope,data] =

CashMatchingOracle(xk,data)

% Output: intercept and slope of cut at xk

% its type: Optimality cut or Feasibility cut

% setting data.Infeas=0 if optimality cut

% or data.Infeas=[s_1;s_2;...],

% the involved scenarios

intercept=[];slope=[];data.Infeas=[];

intercept =...;

slope = ...;

data.Infeas =...;

return


