ALGORITHMS FOR TWO-STAGE SP: A PRIMER ON NONSMOOTH OPTIMIZATION (SUITE)

Claudia Sagastizábal

BAS Lecture 10, April 12, 2016, IMPA

Set YouTube resolution to 480p

for best viewing

To minimize f (unavailable in an explicit manner), minimize its model $\mathbf{M}(x) = \max_{i} \left\{ f^{i} + g^{i \top}(x - x^{i}) \right\}$

Improve the model at each iteration

To minimize f (unavailable in an explicit manner), minimize its model $\mathbf{M}(x) = \max_{i} \left\{ f^{i} + g^{i \top}(x - x^{i}) \right\}$

Improve the model at each iteration:

To minimize f (unavailable in an explicit manner), minimize its model $\mathbf{M}(x) = \max_{i} \left\{ f^{i} + g^{i \top}(x - x^{i}) \right\}$

Improve the model at each iteration:

$$\begin{split} \mathbf{M}_{k+1}(\mathbf{x}) &= \max_{i \leq k+1} \left\{ \mathbf{f}^i + \mathbf{g}^{i \top}(\mathbf{x} - \mathbf{x}^i) \right\} \\ &= \max \left(\mathbf{M}_k(\mathbf{x}), \mathbf{f}^{k+1} + \mathbf{g}^{k+1 \top}(\mathbf{x} - \mathbf{x}^{k+1}) \right) \\ & \text{ where } \mathbf{x}^{k+1} \text{ minimizes } \mathbf{M}_k \end{split}$$

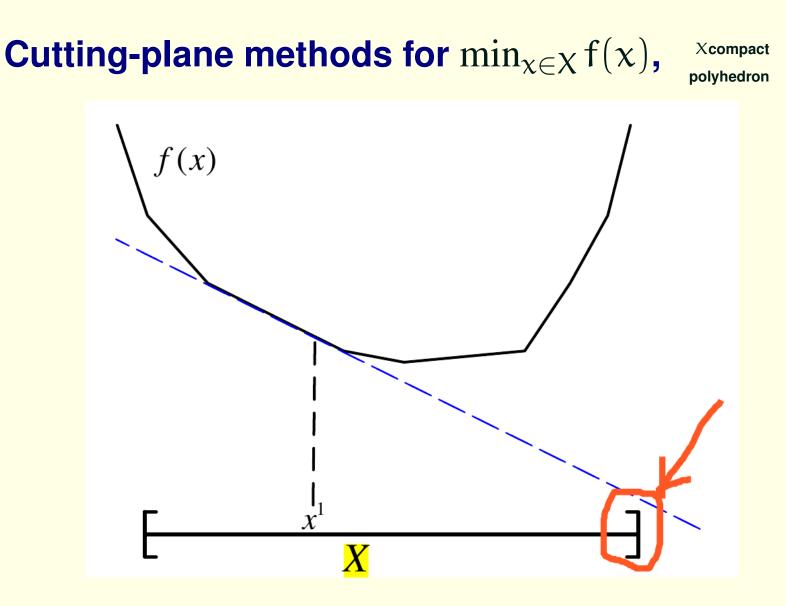
Instead of $x^* \in \arg \min_X f(x)$ at one shot

To minimize f (unavailable in an explicit manner), minimize its model $\mathbf{M}(x) = \max_{i} \left\{ f^{i} + g^{i \top}(x - x^{i}) \right\}$

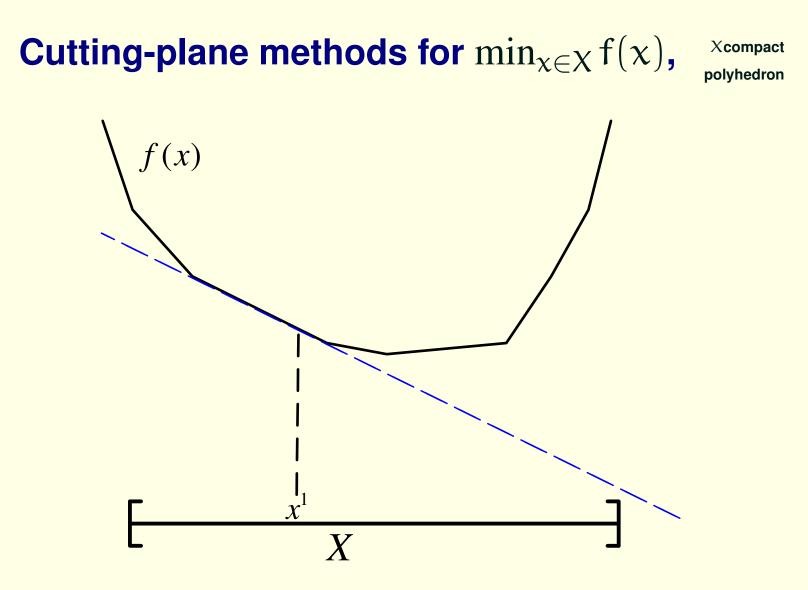
Improve the model at each iteration:

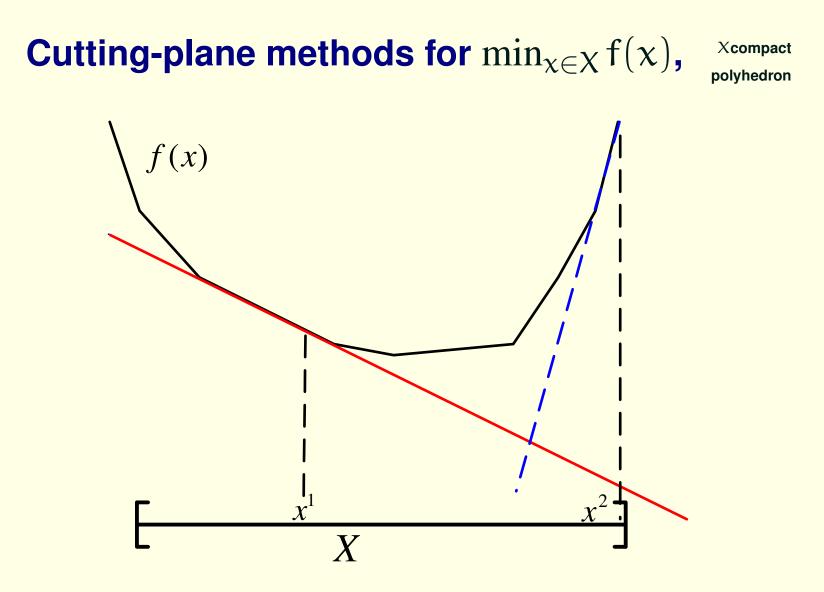
$$\begin{split} \mathbf{M}_{k+1}(x) &= \max_{i \leq k+1} \left\{ \mathbf{f}^i + \mathbf{g}^{i \top}(x - x^i) \right\} \\ &= \max \left(\mathbf{M}_k(x), \mathbf{f}^{k+1} + \mathbf{g}^{k+1 \top}(x - x^{k+1}) \right) \\ & \text{ where } x^{k+1} \text{ minimizes } \mathbf{M}_k \end{split}$$

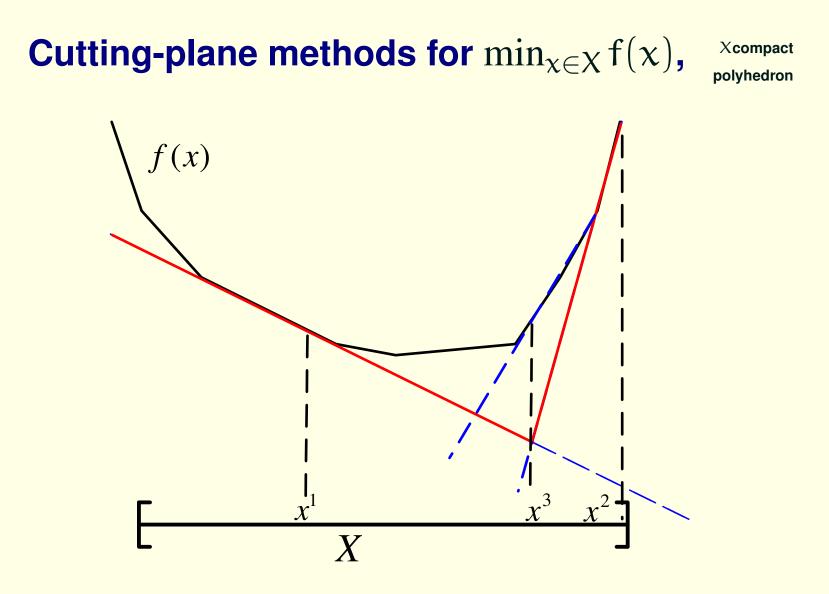
 $\begin{array}{ll} \text{Instead of} & x^* \in \arg\min_X f(x) & \text{at one shot,} \\ & x^{k+1} \in \arg\min_X \mathbf{M}_k(x) & \text{iteratively} \end{array}$

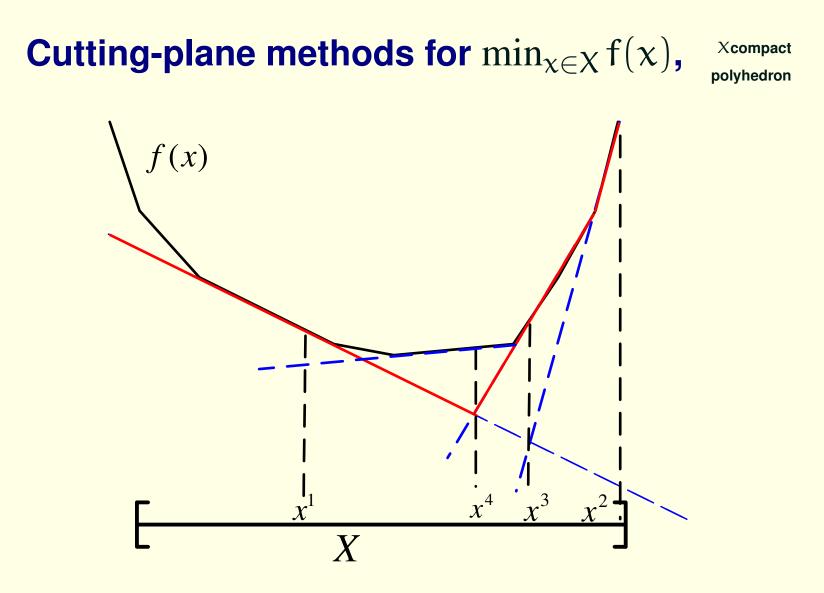


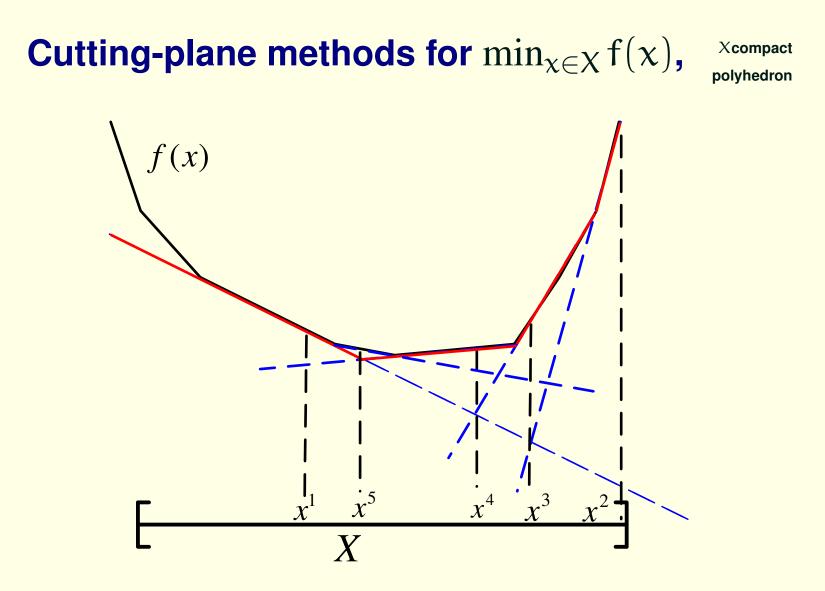
may require artificial bounding if X not compact

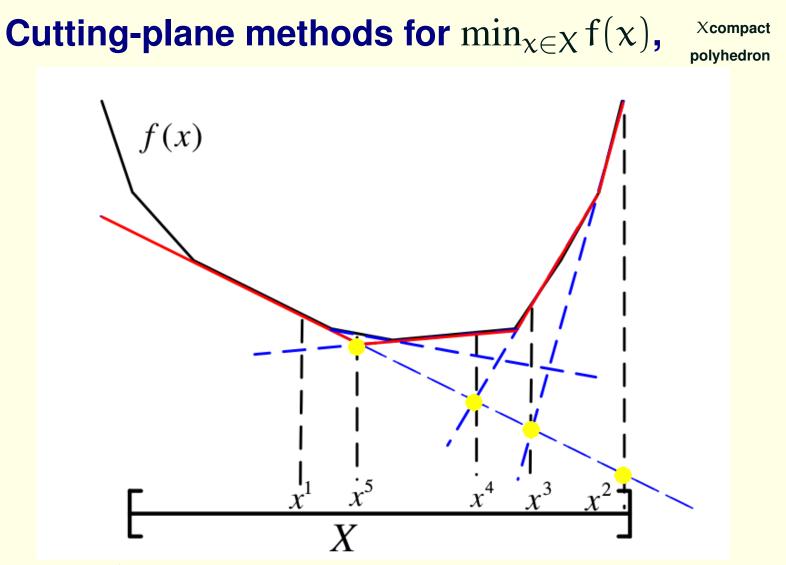






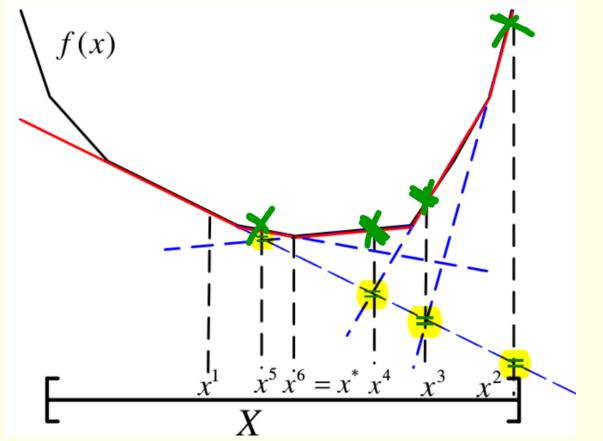




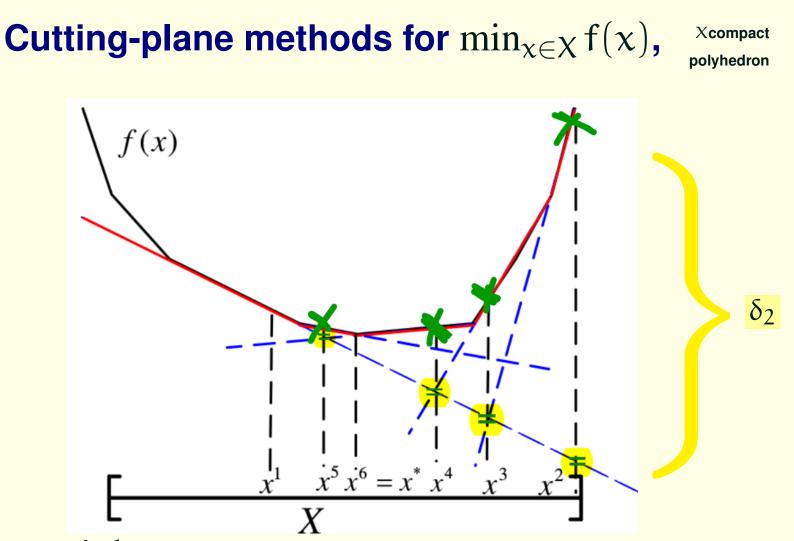


 $\{\mathbf{M}_k(\mathbf{x}^{k+1})\}$ increases

Xcompact polyhedron



 $\{\mathbf{M}_k(x^{k+1})\}$ increases but not necessarily the functional values: $f(x^5) > f(x^4)$



 $\{\mathbf{M}_k(x^{k+1})\}$ increases but not necessarily the functional values: $f(x^5) > f(x^4)$. Stopping test measures $\delta_k := f(x^k) - \mathbf{M}_{k-1}(x^k)$

Cutting-plane methods for $\min_{x \in X} f(x)$,

Xcompact polyhedron

- **0** Choose x^1 and set k = 1 and $M_0 \equiv -\infty$.
- 1 Call the oracle at x^k .
- 2 Build $\mathbf{M}_k(\cdot) = \max\left(\mathbf{M}_{k-1}(\cdot), \mathbf{f}^k + \mathbf{g}^{k\top}(\cdot \mathbf{x}^k)\right)$ and compute $\mathbf{x}^{k+1} \in \arg\min_X \mathbf{M}_k(\mathbf{x})$
- 3 Set k = k + 1 and loop to 1.

Cutting-plane methods for $\min_{x \in X} f(x)$, xcompact

- 0 Choose x^1 and set k = 1 and $M_0 \equiv -\infty$.
- 1 Call the oracle at x^k If $\delta_k = f^k M_{k-1}(x^k) \le \text{tol } \text{STOP}$
- 2 Build $\mathbf{M}_{k}(\cdot) = \max\left(\mathbf{M}_{k-1}(\cdot), \mathbf{f}^{k} + \mathbf{g}^{k\top}(\cdot \mathbf{x}^{k})\right)$ and compute $\mathbf{x}^{k+1} \in \arg\min_{X} \mathbf{M}_{k}(\mathbf{x})$
- 3 Set k = k + 1 and loop to 1.

Cutting-plane methods for $\min_{x \in X} f(x)$,

Xcompact polyhedron

- **0** Choose x^1 and set k = 1 and $M_0 \equiv -\infty$.
- 1 Call the oracle at x^k If $\delta_k = f^k M_{k-1}(x^k) \le tol$ STOP
- 2 Build $\mathbf{M}_{k}(\cdot) = \max\left(\mathbf{M}_{k-1}(\cdot), \mathbf{f}^{k} + \mathbf{g}^{k\top}(\cdot \mathbf{x}^{k})\right)$ and compute $x^{k+1} \in \arg \min_X \mathbf{M}_k(x)$
- 3 Set k = k + 1 and loop to 1.

Properties:

1.
$$\forall k$$
 $f^k + g^{k \top}(\cdot - x^k) \le M_k(\cdot) \le M_{k+1}(\cdot) \le f(\cdot)$

Cutting-plane methods for $\min_{x \in X} f(x)$, xcompact

- 0 Choose x^1 and set k = 1 and $M_0 \equiv -\infty$.
- 1 Call the oracle at x^k If $\delta_k = f^k M_{k-1}(x^k) \le \text{tol } \text{STOP}$
- 2 Build $\mathbf{M}_{k}(\cdot) = \max\left(\mathbf{M}_{k-1}(\cdot), \mathbf{f}^{k} + \mathbf{g}^{k\top}(\cdot \mathbf{x}^{k})\right)$ and compute $\mathbf{x}^{k+1} \in \arg\min_{\mathbf{X}} \mathbf{M}_{k}(\mathbf{x})$
- 3 Set k = k + 1 and loop to 1.

Properties:

1.
$$\forall k \quad f^k + g^{k \top}(\cdot - x^k) \le M_k(\cdot) \le M_{k+1}(\cdot) \le f(\cdot)$$

 $\implies M_k(x^{k+1}) \le \overline{f}_X = \min_X f(x)$

Cutting-plane methods for $\min_{x \in X} f(x)$, xcompact

- 0 Choose x^1 and set k = 1 and $M_0 \equiv -\infty$.
- 1 Call the oracle at x^k If $\delta_k = f^k M_{k-1}(x^k) \le \text{tol } \text{STOP}$
- 2 Build $\mathbf{M}_{k}(\cdot) = \max\left(\mathbf{M}_{k-1}(\cdot), \mathbf{f}^{k} + \mathbf{g}^{k\top}(\cdot \mathbf{x}^{k})\right)$ and compute $\mathbf{x}^{k+1} \in \arg\min_{X} \mathbf{M}_{k}(\mathbf{x})$
- 3 Set k = k + 1 and loop to 1.

Properties:

1.
$$\forall k \quad f^k + g^{k \top}(\cdot - x^k) \le M_k(\cdot) \le M_{k+1}(\cdot) \le f(\cdot)$$

 $\Longrightarrow M_k(x^{k+1}) \le \overline{f}_X = \min_X f(x)$

- 2. $\{M_k(x^{k+1})\}$ is an increasing sequence
- 3. $\{x^k\} \in X$ is a bounded sequence

Cutting-plane methods for $\min_{x \in X} f(x)$,

Xcompact polyhedron

- 0 Choose x^1 and set k = 1 and $M_0 \equiv -\infty$.
- 1 Call the oracle at x^k If $\delta_k = f^k M_{k-1}(x^k) \le tol$ STOP
- 2 Build $\mathbf{M}_k(\cdot) = \max\left(\mathbf{M}_{k-1}(\cdot), \mathbf{f}^k + \mathbf{g}^{k\top}(\cdot \mathbf{x}^k)\right)$ and compute $x^{k+1} \in \arg \min_{\mathbf{X}} \mathbf{M}_k(\mathbf{x})$
- 3 Set k = k + 1 and loop to 1.

Properties:

1.
$$\forall k \quad f^k + g^{k \top}(\cdot - x^k) \le M_k(\cdot) \le M_{k+1}(\cdot) \le f(\cdot)$$

 $\implies M_k(x^{k+1}) \le \overline{f}_X = \min_X f(x)$

- 2. $\{M_k(x^{k+1})\}\$ is an increasing sequence
- 3. $\{x^k\} \in X$ is a bounded sequence

 $\implies \{\operatorname{diam}(\partial f(x^k))\} \leq M$ Teorema 1.39 Otimização II, Izmailov&Solodov

Theorem Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex and X is convex and compact, and take tol = 0. Then

$$\lim M_k(x^{k+1}) = \liminf f(x^k) = \overline{f}_X = \min_X f(x)$$

Theorem Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex and X is convex and compact, and take tol = 0. Then

$$\lim M_k(x^{k+1}) = \liminf f(x^k) = \overline{f}_X = \min_X f(x)$$

Suppose, in addition, that f is polyhedral, so that $\partial f(x) = conv\{v^1, \dots, v^p\}$ for $v^i \in \mathbb{R}^n$.

Theorem Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex and X is convex and compact, and take tol = 0. Then

$$\lim M_k(x^{k+1}) = \liminf f(x^k) = \overline{f}_X = \min_X f(x)$$

Suppose, in addition, that f is polyhedral, so that $\partial f(x) = conv\{v^1, \dots, v^p\}$ for $v^i \in \mathbb{R}^n$.

If the oracle delivers as subgradients only vertices v^i (not a convex combination), the method has finite termination.

Theorem Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex and X is convex and compact, and take tol = 0. Then

$$\lim M_k(x^{k+1}) = \liminf f(x^k) = \overline{f}_X = \min_X f(x)$$

Suppose, in addition, that f is polyhedral, so that $\partial f(x) = \operatorname{conv}\{v^1, \dots, v^p\}$ for $v^i \in \mathbb{R}^n$.

If the oracle delivers as subgradients only vertice v^1 (not a convex combination), the method has finite termine v^1 .

an improvement over subgradient methods

CP methods are like caipirinha with a few drops of cachaça

Cutting-plane methods for $\min_{x \in X} f(x)$, Xcompact polyhedron

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex and X is convex and Theorem compact, and take tol = 0. Then

$$\lim M_k(x^{k+1}) = \liminf f(x^k) = \overline{f}_X = \min_X f(x)$$

Suppose, in addition, that f is polyhedral, so that

 $\dots, \nu^{\iota} \in \mathbb{R}^{n}$. If the oracle delivers as subgradients only verter ν^{ι} (not a convex combination), the method has finite termin ν^{ι} . CP methods are an improvement over sult

CP methods are like caipirinha with a few drops of cachaça can be improved!

Cutting-plane methods: why not the best recipe

 $\left\{ \begin{array}{l} \text{Non-monotone functional values, but converges} \\ \text{because } \liminf \left(f^k - \mathbf{M}_{k-1}(x^k) \right) \to \mathbf{0} \\ \text{Has a stopping test, but LP size grows indefinitely} \\ \text{eventually numerical errors prevail.} \end{array} \right.$

 $\begin{aligned} x^{k+1} \in & arg \min_X \mathbf{M}_k(x) \text{ with } \\ & \mathbf{M}_k(x) = \max_{i \leq k} \{ \mathbf{f}^i + \mathbf{g}^{i \top}(x - x^i) \} \\ & \text{ and } X \text{ polyhedral } \end{aligned}$

Cutting-plane methods: why not the best recipe

 $\left\{ \begin{array}{l} \text{Non-monotone functional values, but converges} \\ \text{because } \liminf \left(f^k - \mathbf{M}_{k-1}(x^k) \right) \to \mathbf{0} \\ \text{Has a stopping test, but LP size grows indefinitely} \\ \text{eventually numerical errors prevail.} \end{array} \right.$

$$\begin{split} x^{k+1} &\in \arg\min_X \mathbf{M}_k(x) \text{ with } \\ and X \text{ polyhedral} \end{split}$$

is equivalent to solving a linear programming problem

$$\begin{cases} \min & r \\ \text{s.t.} & r \in \mathbb{R}, x \in X \\ & r \ge f^{i} + g^{i\top}(x - x^{i}) \text{ for } i \le k \end{cases}$$

Cutting-plane methods: why not the best recipe

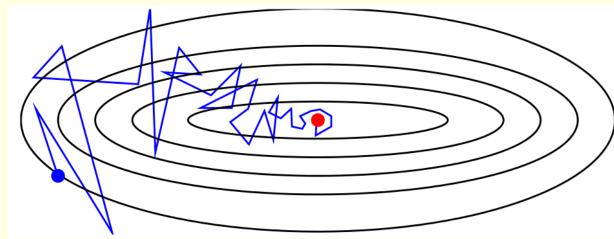
 $\left\{ \begin{array}{l} \text{Non-monotone functional values, but converges} \\ \text{because } \liminf \left(f^k - \mathbf{M}_{k-1}(x^k) \right) \to \mathbf{0} \\ \text{Has a stopping test, but LP size grows indefinitely} \\ \text{eventually numerical errors prevail.} \end{array} \right.$

$$\begin{split} x^{k+1} \in & \arg\min_X \mathbf{M}_k(x) \text{ with } \\ & \mathbf{M}_k(x) = \max_{i \leq k} \{ f^i + g^{i \top}(x - x^i) \} \\ & \text{ and } X \text{ polyhedral} \end{split}$$

is equivalent to solving a linear programming problem

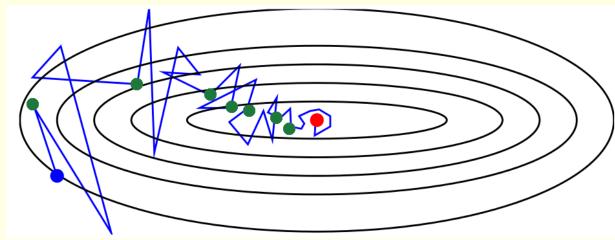
$$\begin{cases} \min & r \\ \text{s.t.} & r \in \mathbb{R}, x \in X \\ & r \ge f^{i} + g^{i\top}(x - x^{i}) \text{ for } i \le k \text{ grows with iterations} \end{cases}$$

- CP brings in the concept of a model, which gives a stopping test (δ_k)
- CP still non-monotone on f



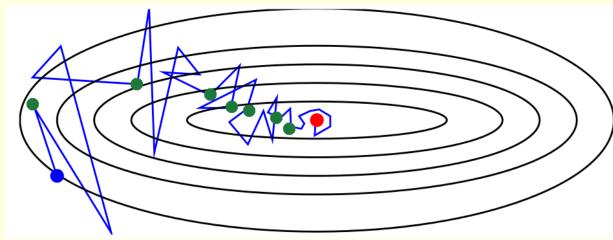
Monotonicity defeats instability and oscillations

- CP brings in the concept of a model, which gives a stopping test (δ_k)
- CP still non-monotone on f



Monotonicity defeats instability and oscillations: the sequence of function values at green-spot iterates converges

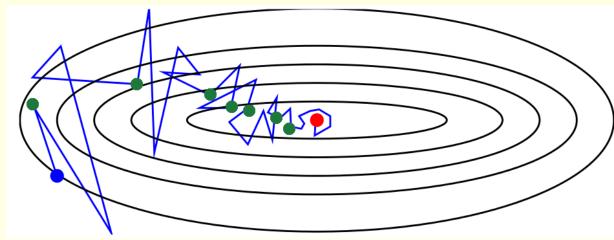
- CP brings in the concept of a model, which gives a stopping test (δ_k)
- CP still non-monotone on f



Monotonicity defeats instability and oscillations: the sequence of function values at green-spot iterates converges

• **Bundle** Methods select green-spot iterates using a descent rule

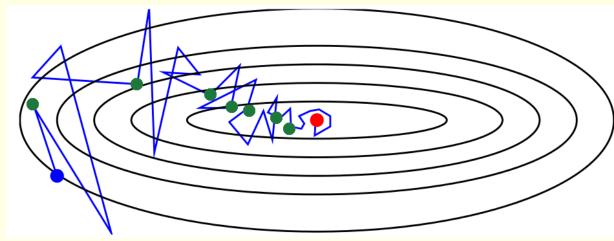
- CP brings in the concept of a model, which gives a stopping test (δ_k)
- CP still non-monotone on f



Monotonicity defeats instability and oscillations: the sequence of function values at green-spot iterates converges

• Bundle Methods select green-spot iterates using a descent rule a good recipe!

- CP brings in the concept of a model, which gives a stopping test (δ_k)
- CP still non-monotone on f



Monotonicity defeats instability and oscillations: the sequence of function values at green-spot iterates converges

Bundle Methods select green-spot iterates using a descent rule
 a good recipe! Welington de Oliveira, later

Cutting-plane method for 2SLP with fixed recourse (*W* not random)

is called the

by Van Slyke and Wets.

Note: in Integer Programming, same ideas are used for the Benders Decomposition

Two-Stage LP with fixed RCR^a, $\Omega = \{\omega^1, ..., \omega^S\}$

where
$$\phi(\mathbf{x}^{\mathbf{k}}) = \mathbb{E}\left[Q(\mathbf{x}^{\mathbf{k}}, \xi)\right] = \sum_{s=1}^{S} p_s Q(\mathbf{x}^{\mathbf{k}}, \xi^s)$$
 and
 $Q(\mathbf{x}^{\mathbf{k}}, \xi^s) = \begin{cases} \min q^{s \top} y \\ \text{s.t. } Wy = h^s - T^s \mathbf{x}^{\mathbf{k}} \\ y \ge 0 \end{cases} = \begin{cases} \max \pi^{\top}(h^s - T^s \mathbf{x}^{\mathbf{k}}) \\ \text{s.t. } W^{\top} \pi \le q^s \end{cases}$

min $\mathbf{c}^{\mathsf{T}}\mathbf{x} + \boldsymbol{\phi}(\mathbf{x})$ for $\mathbf{X} := \{\mathbf{x} \ge \mathbf{0} : \mathbf{A}\mathbf{x} = \mathbf{b}\},\$

$$\partial \phi(\mathbf{x}^{\mathbf{k}}) = -\sum_{s=1}^{S} \mathbf{p}_{s} \mathsf{T}^{s \top} \arg \max \left\{ \pi^{\top}(\mathbf{h}^{s} - \mathsf{T}^{s} \mathbf{x}^{\mathbf{k}}) : \pi \in \Pi(\mathbf{q}^{s}) \right\}$$

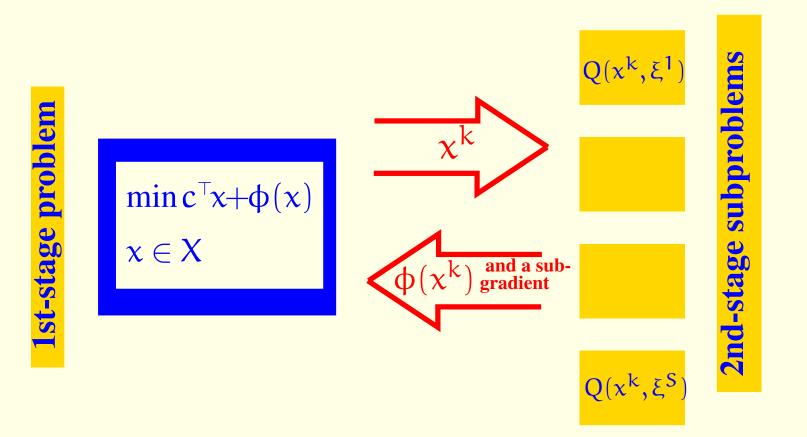
^atoday: without Relative Complete Recourse (infeasibility yields $\phi(x^k) = +\infty$)

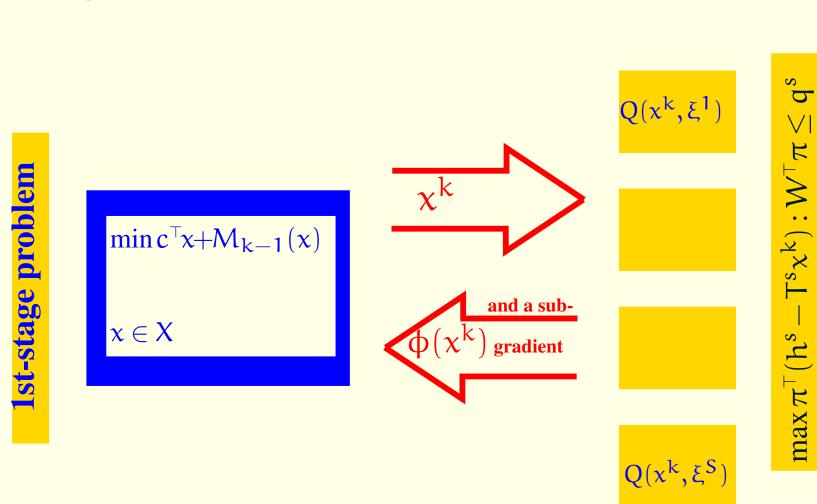
Evaluating
$$\phi(x^k) = \sum_{s=1}^{S} p_s \pi^{s,k \top}(h^s - T^s x^k)$$

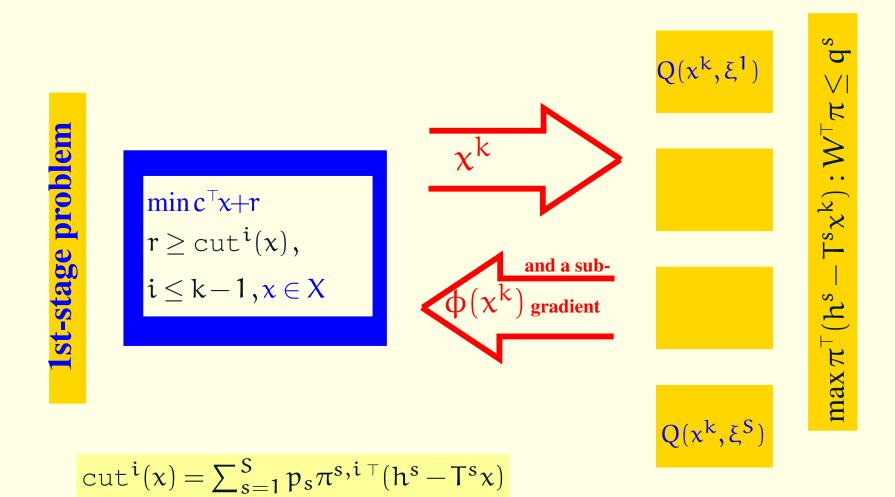
the linearization

$$\begin{split} \varphi(\mathbf{x}) &\geq \varphi(\mathbf{x}^k) + \gamma^{k \top} (\mathbf{x} - \mathbf{x}^k) \\ &= \sum_{s=1}^{S} p_s \pi^{s,k \top} (\mathbf{h}^s - \mathbf{T}^s \mathbf{x}^k) - \sum_{s=1}^{S} p_s \pi^{s,k \top} \mathbf{T}^s (\mathbf{x} - \mathbf{x}^k) \\ &= \sum_{s=1}^{S} p_s \pi^{s,k \top} (\mathbf{h}^s - \mathbf{T}^s \mathbf{x}) \end{split}$$

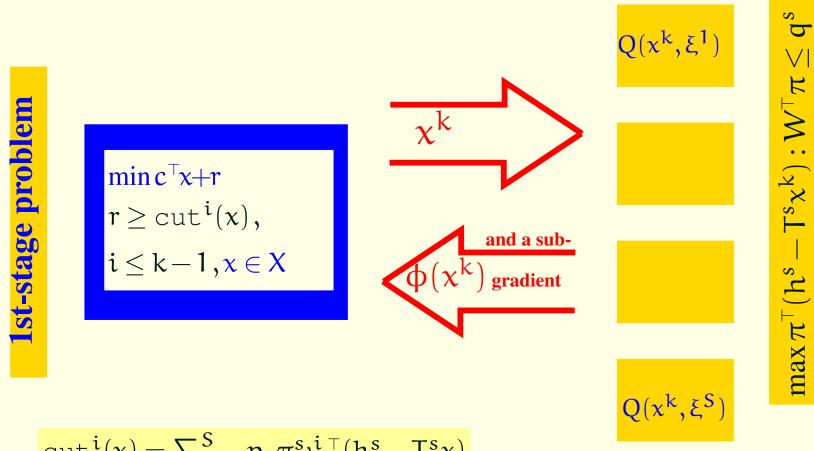
Graphically





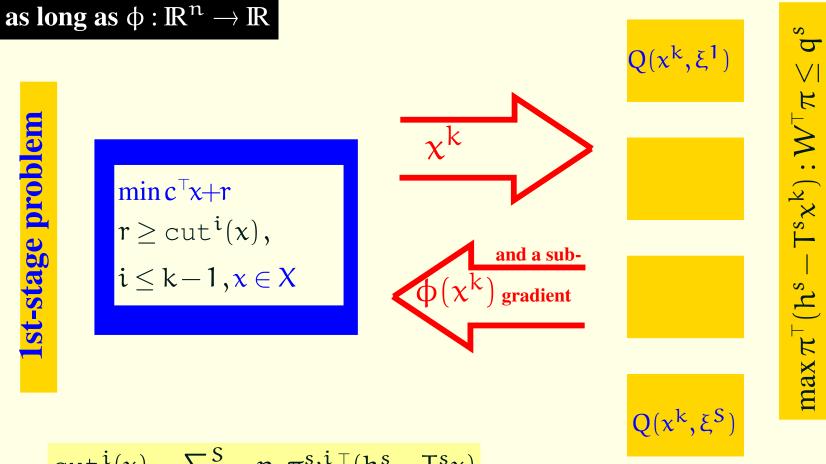


Finite termination if LP solver uses a simplex method (only vertices)

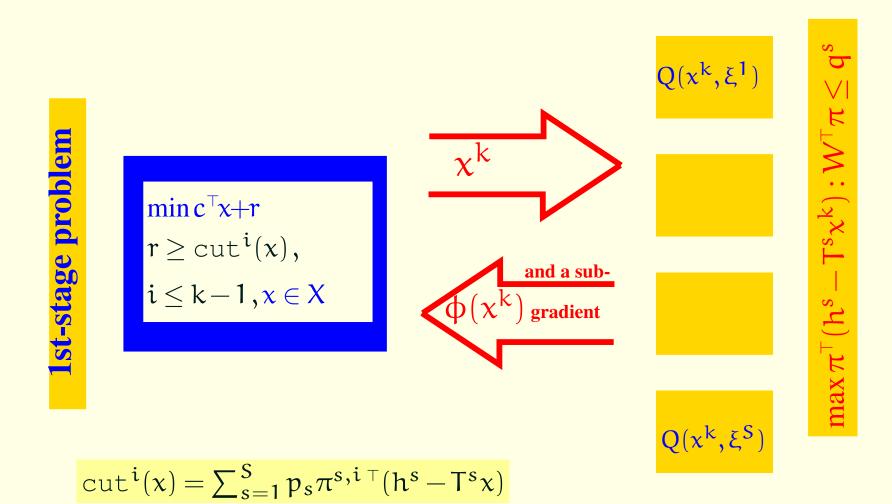


$$\operatorname{cut}^{i}(\mathbf{x}) = \sum_{s=1}^{S} p_{s} \pi^{s, i} (h^{s} - T^{s} \mathbf{x})$$

Finite termination if LP solver uses a simplex method (only vertices)



$$\operatorname{cut}^{i}(\mathbf{x}) = \sum_{s=1}^{S} p_{s} \pi^{s, i} (h^{s} - T^{s} \mathbf{x})$$



Infeasibility in the primal formulation amounts to dual unboundedness

$$Q(x^{k},\xi^{s}) = \begin{cases} \min & q^{s \top}y \\ s.t. & Wy = h^{s} - T^{s}x^{k} \\ y \ge 0 \end{cases} = \begin{cases} \max & \pi^{\top}(h^{s} - T^{s}x^{k}) \\ s.t. & W^{\top}\pi \le q^{s} \end{cases}$$

Infeasibility in the primal formulation amounts to dual unboundedness

$$Q(x^{k},\xi^{s}) = \begin{cases} \min & q^{s \top}y \\ s.t. & Wy = h^{s} - T^{s}x^{k} \\ y \ge 0 \end{cases} = \begin{cases} \max & \pi^{\top}(h^{s} - T^{s}x^{k}) \\ s.t. & W^{\top}\pi \le q^{s} \end{cases}$$

 $x^k \not\in dom \, \varphi$ (just one $Q(\cdot, \xi^s)$ suffices) makes φ extended-valued

Infeasibility in the primal formulation amounts to dual unboundedness

$$Q(x^{k},\xi^{s}) = \begin{cases} \min q^{s \top}y \\ s.t. \quad Wy = h^{s} - T^{s}x^{k} \\ y \ge 0 \end{cases} = \begin{cases} \max \pi^{\top}(h^{s} - T^{s}x^{k}) \\ s.t. \quad W^{\top}\pi \le q^{s} \end{cases}$$

 $x^k \not\in dom \phi$ (just one $Q(\cdot, \xi^s)$ suffices) makes ϕ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such points.

So far, we defined **objective cuts**, averaging linearizations for $Q(\cdot, \xi^s)$: Obj-cutⁱ(x) = $\sum_{s=1}^{s} p_s \pi^{s,i \top}(h^s - T^s x)$

Infeasibility in the primal formulation amounts to dual unboundedness

$$Q(x^{k},\xi^{s}) = \begin{cases} \min q^{s \top}y \\ s.t. \quad Wy = h^{s} - T^{s}x^{k} \\ y \ge 0 \end{cases} = \begin{cases} \max \pi^{\top}(h^{s} - T^{s}x^{k}) \\ s.t. \quad W^{\top}\pi \le q^{s} \end{cases}$$

 $x^k \not\in dom \phi$ (just one $Q(\cdot, \xi^s)$ suffices) makes ϕ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such points.

So far, we defined objective cuts, averaging linearizations for $Q(\cdot, \xi^s)$: $Obj-cut^i(x) = \sum_{s=1}^{S} p_s \pi^{s,i \top}(h^s - T^s x)$ We'll build feasibility cuts Feas - cutⁱ(x) = ?

Infeasibility in the primal formulation amounts to dual unboundedness

$$U(x^{k},\xi^{s}) = \begin{cases} \min \|z\| & \max \eta^{T}(h^{s} - T^{s}x^{k}) \\ s.t. \quad Wy + z = h^{s} - T^{s}x^{k} & s.t. \quad W^{T}\pi \le 0 \\ y \ge 0 & s.t. \quad W^{T}\pi \le 0 \end{cases}$$

 $x^k \not\in dom \varphi$ (just one $Q(\cdot, \xi^s)$ suffices) makes φ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such points.

So far, we defined objective cuts , averaging linearizations for $Q(\cdot, \xi^s)$:

$$\texttt{Obj-cut}^{i}(x) = \sum_{s=1}^{S} p_{s} \pi^{s,i} T(h^{s} - T^{s}x)$$

We'll build feasibility cuts

 $\texttt{Feas-cut}^{i}(x) = \texttt{linearization for } U(\cdot,\xi^{s})$

Infeasibility in the primal formulation amounts to dual unboundedness

$$U(x^{k},\xi^{s}) = \begin{cases} \min \|z\| \\ \text{s.t. } Wy + z = h^{s} - T^{s}x^{k} \\ y \ge 0 \end{cases} = \begin{cases} \max \eta^{\top}(h^{s} - T^{s}x^{k}) \\ \text{s.t. } W^{\top}\eta \le 0 \\ \|\eta\|_{*} \le 1 \end{cases}$$

 $x^k \not\in dom \varphi$ (just one $Q(\cdot, \xi^s)$ suffices) makes φ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such points.

So far, we defined objective cuts , averaging linearizations for $Q(\cdot, \xi^s)$:

Obj-cutⁱ(x) =
$$\sum_{s=1}^{S} p_s \pi^{s,i} (h^s - T^s x)$$

We'll build feasibility cuts

 $\texttt{Feas-cut}^{i}(x) = \texttt{linearization for } U(\cdot,\xi^{s})$

Infeasibility in the primal formulation amounts to dual unboundedness

$$U(x^{k},\xi^{s}) = \begin{cases} \min \|z\| \\ \text{s.t. } Wy + z = h^{s} - T^{s}x^{k} \\ y \ge 0 \end{cases} = \begin{cases} \max \eta^{\top}(h^{s} - T^{s}x^{k}) \\ \text{s.t. } W^{\top}\eta \le 0 \\ \|\eta\|_{*} \le 1 \end{cases}$$

 $x^k \not\in dom \varphi$ (just one $Q(\cdot, \xi^s)$ suffices) makes φ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such points.

So far, we defined objective cuts , averaging linearizations for $Q(\cdot, \xi^s)$:

$$\texttt{Obj-cut}^{i}(x) = \sum_{s=1}^{S} p_{s} \pi^{s,i} \mathsf{T}(h^{s} - \mathsf{T}^{s} x)$$

We'll build feasibility cuts for each scenario s

 $\texttt{Feas-cut}^{s,k}(x) = \eta^{s,k \top}(h^s - \mathsf{T}^s x) \text{ for } s \text{ such that } x^k \not\in \texttt{dom}\,Q(\cdot,\xi^s)$

L-shaped method: feasibility cuts

- $\operatorname{dom} U(\cdot, \xi^s) = \mathbb{R}^n$ and $U(\cdot, \xi^s)$ is polyhedral.
- $-Q(x,\xi^s) < +\infty \iff U(x,\xi^s) = 0$

$orall \mathbf{x} \in \operatorname{\mathsf{dom}} \mathrm{Q}(\cdot, \boldsymbol{\xi^s})$ Feas – Cut $^{\mathbf{s}, \kappa}(\mathbf{x}) \leq 0$.

- Polyhedral norm, ℓ_1 or ℓ_∞ , gives LP (respective dual norms are ℓ_∞ or ℓ_1)
- When $x^k \not\in \text{dom } Q(\cdot, \xi^s)$, commercial solvers like Gurobi or CPLEX give $\eta^{s,k}$ directly, without having to solve an additional LP ("recession direction").

L-shaped method: feasibility cuts

- $\operatorname{dom} U(\cdot, \xi^s) = \mathbb{R}^n$ and $U(\cdot, \xi^s)$ is polyhedral.
- $-Q(x,\xi^s) < +\infty \iff U(x,\xi^s) = 0$

 $\forall x \in \operatorname{dom} Q(\cdot, \xi^s)$ Feas-Cut^{s,k}(x) ≤ 0

- Polyhedral norm, ℓ_1 or ℓ_∞ , gives LP (respective dual norms are ℓ_∞ or ℓ_1)
- When x^k ∉ dom Q(·, ξ^s), commercial solvers like Gurobi or CPLEX give η^{s,k} directly, without having to solve an additional LP ("recession direction").

L-shaped method: convergence

Like we saw for the cutting-plane method for $f : \mathbb{R}^n \to \mathbb{R}$, the method has finite termination:

Now $f(x) = c^{T}x + \phi(x)$ is defined on the extended reals, but epiQ(\cdot, ξ^{s}) is a closed convex polyhedron and its intersection with the compact X can be characterized by a **finite** number of **basic** objective and feasibility cuts. of the form

$$\begin{array}{lll} \texttt{Obj-cut}^{i}(x) &=& \sum_{s=1}^{S} p_{s} \pi^{s,i\,\top}(h^{s}-\mathsf{T}^{s}x) & \text{if } x^{i} \in \mathsf{dom}\,\varphi \\ \texttt{Feas-cut}^{s,i}(x) &=& \eta^{s,i\,\top}(h^{s}-\mathsf{T}^{s}x) & \text{if } x^{i} \not\in \mathsf{dom}\,Q(\cdot,\xi^{s}) \end{array}$$

$$\begin{array}{lll} \text{Obj-cut}^{i}(x) &=& \sum_{s=1}^{S} p_{s} \pi^{s,i\,\top}(h^{s}-\mathsf{T}^{s}x) & \text{if } x^{i} \in \text{dom}\,\varphi \\ \text{Feas-cut}^{s,i}(x) &=& \eta^{s,i\,\top}(h^{s}-\mathsf{T}^{s}x) & \text{if } x^{i} \notin \text{dom}\,Q(\cdot,\xi^{s}) \\ & \text{Let} \end{array}$$

$$J_{Obj}^k = \{i < k : x^i \in dom \phi\}$$

and, for $s = 1, ..., S$ $J_{Feas}^{s,k} = \{i < k : x^i \notin dom Q(\cdot, \xi^s)\}$

$$\begin{array}{lll} \text{Obj-cut}^{i}(x) &=& \sum_{s=1}^{S} p_{s} \pi^{s,i\,\top}(h^{s}-\mathsf{T}^{s}x) & \text{if } x^{i} \in \text{dom}\,\varphi \\ \text{Feas-cut}^{s,i}(x) &=& \eta^{s,i\,\top}(h^{s}-\mathsf{T}^{s}x) & \text{if } x^{i} \notin \text{dom}\,Q(\cdot,\xi^{s}) \\ & \text{Let} \end{array}$$

$$J_{Obj}^k = \{i < k : x^i \in dom \phi\}$$

and, for $s = 1, ..., S$ $J_{Feas}^{s,k} = \{i < k : x^i \notin dom Q(\cdot, \xi^s)\}$

Then the 1st-stage problem has the form

╰

$$\begin{cases} \min \ c^{\mathsf{T}}x+r \\ \text{s.t.} \ r \ge 0 - \operatorname{cut}^{i}(x) & \text{for } i \in J^{k-1}_{Obj} \\ 0 \ge F - \operatorname{cut}^{s,i}(x) & \text{for } i \in J^{s,k-1}_{Feas} \text{ and } s = 1, \dots, S \\ x \in X \end{cases}$$

