
ALGORITHMS FOR TWO-STAGE SP:
A PRIMER ON NONSMOOTH

OPTIMIZATION (SUITE)

Claudia Sagastizábal

BAS Lecture 10, April 12, 2016, IMPA



Set YouTube resolution to
480p

for best viewing



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration:

Mk+1(x) = maxi≤k+1
{
fi+gi>(x−xi)

}
= max

(
Mk(x), f

k+1+gk+1>(x−xk+1)
)

where xk+1 minimizes Mk



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration:

Mk+1(x) = maxi≤k+1
{
fi+gi>(x−xi)

}
= max

(
Mk(x), f

k+1+gk+1>(x−xk+1)
)

where xk+1 minimizes Mk

Instead of x∗ ∈ argminX f(x) at one shot

xk+1 ∈ argminXMk(x) iteratively



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

To minimize f (unavailable in an explicit manner), minimize its

model M(x) = maxi
{
fi+gi>(x−xi)

}
Improve the model at each iteration:

Mk+1(x) = maxi≤k+1
{
fi+gi>(x−xi)

}
= max

(
Mk(x), f

k+1+gk+1>(x−xk+1)
)

where xk+1 minimizes Mk

Instead of x∗ ∈ argminX f(x) at one shot,

xk+1 ∈ argminXMk(x) iteratively



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

may require artificial bounding if X not compact



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

)(xf

1
x

X



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

)(xf

1
x

X

2
x



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

)(xf

1
x

X

2
x

3
x



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

)(xf

1
x

X

2
x

3
x

4
x



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

)(xf

1
x

X

2
x

3
x

4
x

5
x



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

{Mk(x
k+1)} increases



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

{Mk(x
k+1)} increases but not necessarily the functional values:

f(x5)> f(x4)



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

{Mk(x
k+1)} increases but not necessarily the functional values:

f(x5)> f(x4). Stopping test measures δk := f(xk)−Mk−1(x
k)

}
δ2



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

0 Choose x1 and set k= 1 andM0 ≡−∞.
1 Call the oracle at xk.If δk = fk−Mk−1(x

k)≤ tol STOP

2 Build Mk(·) = max
(

Mk−1(·), fk+gk>(·−xk)
)

and

compute xk+1 ∈ argminXMk(x)

3 Set k= k+1 and loop to 1.



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

0 Choose x1 and set k= 1 andM0 ≡−∞.
1 Call the oracle at xk.If δk = fk−Mk−1(x

k)≤ tol STOP
2 Build Mk(·) = max

(
Mk−1(·), fk+gk>(·−xk)

)
and

compute xk+1 ∈ argminXMk(x)

3 Set k= k+1 and loop to 1.



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

0 Choose x1 and set k= 1 andM0 ≡−∞.
1 Call the oracle at xk.If δk = fk−Mk−1(x

k)≤ tol STOP
2 Build Mk(·) = max

(
Mk−1(·), fk+gk>(·−xk)

)
and

compute xk+1 ∈ argminXMk(x)

3 Set k= k+1 and loop to 1.
Properties:

1. ∀k fk+gk>(·−xk)≤Mk(·)≤Mk+1(·)≤ f(·)



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

0 Choose x1 and set k= 1 andM0 ≡−∞.
1 Call the oracle at xk.If δk = fk−Mk−1(x

k)≤ tol STOP
2 Build Mk(·) = max

(
Mk−1(·), fk+gk>(·−xk)

)
and

compute xk+1 ∈ argminXMk(x)

3 Set k= k+1 and loop to 1.
Properties:

1. ∀k fk+gk>(·−xk)≤Mk(·)≤Mk+1(·)≤ f(·)
=⇒Mk(x

k+1)≤ f̄X = minX f(x)



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

0 Choose x1 and set k= 1 andM0 ≡−∞.
1 Call the oracle at xk.If δk = fk−Mk−1(x

k)≤ tol STOP
2 Build Mk(·) = max

(
Mk−1(·), fk+gk>(·−xk)

)
and

compute xk+1 ∈ argminXMk(x)

3 Set k= k+1 and loop to 1.
Properties:

1. ∀k fk+gk>(·−xk)≤Mk(·)≤Mk+1(·)≤ f(·)
=⇒Mk(x

k+1)≤ f̄X = minX f(x)

2. {Mk(x
k+1)} is an increasing sequence

3. {xk} ∈ X is a bounded sequence

=⇒ {diam(∂f(xk))}≤M



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

0 Choose x1 and set k= 1 andM0 ≡−∞.
1 Call the oracle at xk.If δk = fk−Mk−1(x

k)≤ tol STOP
2 Build Mk(·) = max

(
Mk−1(·), fk+gk>(·−xk)

)
and

compute xk+1 ∈ argminXMk(x)

3 Set k= k+1 and loop to 1.
Properties:

1. ∀k fk+gk>(·−xk)≤Mk(·)≤Mk+1(·)≤ f(·)
=⇒Mk(x

k+1)≤ f̄X = minX f(x)

2. {Mk(x
k+1)} is an increasing sequence

3. {xk} ∈ X is a bounded sequence

=⇒ {diam(∂f(xk))}≤M Teorema 1.39 Otimização II, Izmailov&Solodov



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

Theorem Suppose f : IRn→ IR is convex and X is convex and
compact, and take tol= 0. Then

limMk(x
k+1) = liminff(xk) = f̄X = min

X
f(x)



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

Theorem Suppose f : IRn→ IR is convex and X is convex and
compact, and take tol= 0. Then

limMk(x
k+1) = liminff(xk) = f̄X = min

X
f(x)

Suppose, in addition, that f is polyhedral, so that
∂f(x) = conv{v1, . . . ,vp} for vi ∈ IRn.



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

Theorem Suppose f : IRn→ IR is convex and X is convex and
compact, and take tol= 0. Then

limMk(x
k+1) = liminff(xk) = f̄X = min

X
f(x)

Suppose, in addition, that f is polyhedral, so that
∂f(x) = conv{v1, . . . ,vp} for vi ∈ IRn.

If the oracle delivers as subgradients only vertices vi (not a convex
combination), the method has finite termination.



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

Theorem Suppose f : IRn→ IR is convex and X is convex and
compact, and take tol= 0. Then

limMk(x
k+1) = liminff(xk) = f̄X = min

X
f(x)

Suppose, in addition, that f is polyhedral, so that
∂f(x) = conv{v1, . . . ,vp} for vi ∈ IRn.

If the oracle delivers as subgradients only vertices vi (not a convex
combination), the method has finite termination.
CP methods are

an improvement over subgradient methods
a bett

er
rec

ipe

CP methods are like caipirinha with a few drops of cachaça



Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

Theorem Suppose f : IRn→ IR is convex and X is convex and
compact, and take tol= 0. Then

limMk(x
k+1) = liminff(xk) = f̄X = min

X
f(x)

Suppose, in addition, that f is polyhedral, so that
∂f(x) = conv{v1, . . . ,vp} for vi ∈ IRn.

If the oracle delivers as subgradients only vertices vi (not a convex
combination), the method has finite termination.
CP methods are

an improvement over subgradient methods
a bett

er
rec

ipe

CP methods are like caipirinha with a few drops of cachaça
can be improved!



Cutting-plane methods: why not the best recipe

Non-monotone functional values, but converges

because liminf
(
fk−Mk−1(x

k)
)→ 0

Has a stopping test, but LP size grows indefinitely

eventually numerical errors prevail.

xk+1 ∈ argminXMk(x) with
Mk(x) = maxi≤k{fi+gi>(x−xi)}

and X polyhedral



Cutting-plane methods: why not the best recipe

Non-monotone functional values, but converges

because liminf
(
fk−Mk−1(x

k)
)→ 0

Has a stopping test, but LP size grows indefinitely

eventually numerical errors prevail.

xk+1 ∈ argminXMk(x) with
Mk(x) = maxi≤k{fi+gi>(x−xi)}

and X polyhedral

is equivalent to solving a linear programming problem
min r

s.t. r ∈ IR ,x ∈ X
r≥ fi+gi>(x−xi) for i≤ kgrowswithiterations



Cutting-plane methods: why not the best recipe

Non-monotone functional values, but converges

because liminf
(
fk−Mk−1(x

k)
)→ 0

Has a stopping test, but LP size grows indefinitely

eventually numerical errors prevail.

xk+1 ∈ argminXMk(x) with
Mk(x) = maxi≤k{fi+gi>(x−xi)}

and X polyhedral

is equivalent to solving a linear programming problem
min r

s.t. r ∈ IR ,x ∈ X
r≥ fi+gi>(x−xi) for i≤ k grows with iterations



Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone on f

Monotonicity defeats instability and oscillations



Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone on f

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges



Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone on f

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges

• Bundle Methods select green-spot iterates using a descent rule



Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone on f

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges

• Bundle Methods select green-spot iterates using a descent rule
a good recipe!



Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone on f

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges

• Bundle Methods select green-spot iterates using a descent rule
a good recipe! Welington de Oliveira, later



Cutting-plane method for 2SLP with fixed

recourse (W not random)

is called the

L-shaped method ,
by Van Slyke and Wets.

Note: in Integer Programming, same ideas are used for the
Benders Decomposition



Two-Stage LP with fixed RCRa, Ω= {ω1, . . . ,ωS}

min
x∈X

c>x+φ(x) for X := {x≥ 0 : Ax = b} ,

where φ(xk)=E
[
Q(xk,ξ)

]
=

S∑
s=1

psQ(xk,ξs) and

Q(xk,ξs)=


min qs >y

s.t. Wy= hs−Tsxk

y≥ 0

=

 max π>(hs−Tsxk)

s.t. W>π≤ qs

∂φ(xk) = −

S∑
s=1

psT
s > argmax

{
π>(hs−Tsxk) : π ∈ Π(qs)

}

atoday: without Relative Complete Recourse (infeasibility yields φ(xk) = +∞)



Evaluating φ(xk) =
S∑
s=1

psπ
s,k >(hs−T sxk)

gives for free a subgradient γk =−

S∑
s=1

psT
s >πs,k ∈ ∂φ(xk) and

the linearization

φ(x) ≥ φ(xk)+γk >(x−xk)

=

S∑
s=1

psπ
s,k >(hs−Tsxk)−

S∑
s=1

psπ
s,k >Ts(x−xk)

=

S∑
s=1

psπ
s,k >(hs−Tsx)



Graphically

xk

1s
t-

st
ag

e
pr

ob
le

m

minc>x+φ(x)

x ∈ X and a sub-
φ(xk) gradient

Q(xk,ξ1)

Q(xk,ξS)

2n
d-

st
ag

e
su

bp
ro

bl
em

s



L-shaped method kth iteration replacesφ byMk−1

xk

1s
t-

st
ag

e
pr

ob
le

m

minc>x+Mk−1(x)

x ∈ X
and a sub-

φ(xk) gradient

Q(xk,ξ1)

Q(xk,ξS)

m
ax
π
>
(h
s
−
T
s
x
k
)
:W

>
π
≤
q
s



L-shaped method kth iteration

xk

1s
t-

st
ag

e
pr

ob
le

m

minc>x+r
r≥ cuti(x) ,
i≤ k−1,x ∈ X

and a sub-

φ(xk) gradient

Q(xk,ξ1)

Q(xk,ξS)

m
ax
π
>
(h
s
−
T
s
x
k
)
:W

>
π
≤
q
s

cuti(x) =
∑S
s=1psπ

s,i >(hs−Tsx)



L-shaped method kth iteration

xk

1s
t-

st
ag

e
pr

ob
le

m

minc>x+r
r≥ cuti(x) ,
i≤ k−1,x ∈ X

and a sub-

φ(xk) gradient

Q(xk,ξ1)

Q(xk,ξS)

m
ax
π
>
(h
s
−
T
s
x
k
)
:W

>
π
≤
q
s

cuti(x) =
∑S
s=1psπ

s,i >(hs−Tsx)

Finite termination if LP solver uses a simplex method (only vertices)



L-shaped method kth iteration

xk

1s
t-

st
ag

e
pr

ob
le

m

minc>x+r
r≥ cuti(x) ,
i≤ k−1,x ∈ X

and a sub-

φ(xk) gradient

Q(xk,ξ1)

Q(xk,ξS)

m
ax
π
>
(h
s
−
T
s
x
k
)
:W

>
π
≤
q
s

cuti(x) =
∑S
s=1psπ

s,i >(hs−Tsx)

Finite termination if LP solver uses a simplex method (only vertices)

as long as φ : IRn→ IR



L-shaped method: what about infeasibility?

xk

1s
t-

st
ag

e
pr

ob
le

m

minc>x+r
r≥ cuti(x) ,
i≤ k−1,x ∈ X

and a sub-

φ(xk) gradient

Q(xk,ξ1)

Q(xk,ξS)

m
ax
π
>
(h
s
−
T
s
x
k
)
:W

>
π
≤
q
s

cuti(x) =
∑S
s=1psπ

s,i >(hs−Tsx)



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

Q(xk,ξs)=


min qs >y

s.t. Wy= hs−Tsxk

y≥ 0

=

 max π>(hs−Tsxk)

s.t. W>π≤ qs



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

Q(xk,ξs)=


min qs >y

s.t. Wy= hs−Tsxk

y≥ 0

=

 max π>(hs−Tsxk)

s.t. W>π≤ qs

xk 6∈ domφ (just one Q(·,ξs) suffices) makes φ extended-valued



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

Q(xk,ξs)=


min qs >y

s.t. Wy= hs−Tsxk

y≥ 0

=

 max π>(hs−Tsxk)

s.t. W>π≤ qs

xk 6∈ domφ (just one Q(·,ξs) suffices) makes φ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such
points.

So far, we defined objective cuts , averaging linearizations for Q(·,ξs):
Obj−cuti(x) =

∑S
s=1psπ

s,i >(hs−Tsx)



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

Q(xk,ξs)=


min qs >y

s.t. Wy= hs−Tsxk

y≥ 0

=

 max π>(hs−Tsxk)

s.t. W>π≤ qs

xk 6∈ domφ (just one Q(·,ξs) suffices) makes φ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such
points.

So far, we defined objective cuts , averaging linearizations for Q(·,ξs):
Obj−cuti(x) =

∑S
s=1psπ

s,i >(hs−Tsx)

We’ll build feasibility cuts
Feas−cuti(x) = ?



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

U(xk,ξs) =


min ‖z‖
s.t. Wy +z = hs−Tsxk

y≥ 0

max η>(hs−Tsxk)

s.t. W>π≤ 0
s.t. W>π≤ 0

xk 6∈ domφ (just one Q(·,ξs) suffices) makes φ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such
points.

So far, we defined objective cuts , averaging linearizations for Q(·,ξs):

Obj−cuti(x) =
∑S
s=1psπ

s,i >(hs−Tsx)

We’ll build feasibility cuts
Feas−cuti(x) =linearization for U(·,ξs)



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

U(xk,ξs)=


min ‖z‖
s.t. Wy +z = hs−Tsxk

y≥ 0

=


max η>(hs−Tsxk)

s.t. W>η≤ 0
‖η‖∗ ≤ 1

xk 6∈ domφ (just one Q(·,ξs) suffices) makes φ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such
points.

So far, we defined objective cuts , averaging linearizations for Q(·,ξs):

Obj−cuti(x) =
∑S
s=1psπ

s,i >(hs−Tsx)

We’ll build feasibility cuts
Feas−cuti(x) =linearization for U(·,ξs)



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

U(xk,ξs)=


min ‖z‖
s.t. Wy +z = hs−Tsxk

y≥ 0

=


max η>(hs−Tsxk)

s.t. W>η≤ 0
‖η‖∗ ≤ 1

xk 6∈ domφ (just one Q(·,ξs) suffices) makes φ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such
points.

So far, we defined objective cuts , averaging linearizations for Q(·,ξs):

Obj−cuti(x) =
∑S
s=1psπ

s,i >(hs−Tsx)

We’ll build feasibility cuts for each scenario s
Feas−cuts,k(x) = ηs,k >(hs−Tsx) for s such that xk 6∈ domQ(·,ξs)



L-shaped method: feasibility cuts
– domU(·,ξs) = IRn and U(·,ξs) is polyhedral.

– Q(x,ξs)<+∞ ⇐⇒ U(x,ξs) = 0

∀x ∈ domQ(·,ξs) Feas−Cuts,k(x)≤ 0

– Polyhedral norm, `1 or `∞, gives LP (respective dual norms are `∞ or
`1)

– When xk 6∈ domQ(·,ξs), commercial solvers like Gurobi or CPLEX
give ηs,k directly, without having to solve an additional LP (“recession
direction").



L-shaped method: feasibility cuts
– domU(·,ξs) = IRn and U(·,ξs) is polyhedral.

– Q(x,ξs)<+∞ ⇐⇒ U(x,ξs) = 0

∀x ∈ domQ(·,ξs) Feas−Cuts,k(x)≤ 0

– Polyhedral norm, `1 or `∞, gives LP (respective dual norms are `∞ or
`1)

– When xk 6∈ domQ(·,ξs), commercial solvers like Gurobi or CPLEX
give ηs,k directly, without having to solve an additional LP (“recession
direction").



L-shaped method: convergence

Like we saw for the cutting-plane method for f : IRn→ IR,
the method has finite termination:

Now f(x) = c>x+φ(x) is defined on the extended reals, but
epiQ(·,ξs) is a closed convex polyhedron and its
intersection with the compact X can be characterized by a
finite number of basic objective and feasibility cuts. of the
form

Obj−cuti(x) =
∑S
s=1psπ

s,i >(hs−T sx) if xi ∈ domφ
Feas−cuts,i(x) = ηs,i >(hs−T sx) if xi 6∈ domQ(·,ξs)



L-shaped method kth iteration

Obj−cuti(x) =
∑S
s=1psπ

s,i >(hs−T sx) if xi ∈ domφ
Feas−cuts,i(x) = ηs,i >(hs−T sx) if xi 6∈ domQ(·,ξs)

Let

JkObj = {i < k : xi ∈ domφ}
and, for s= 1, . . . ,S Js,kFeas = {i < k : xi 6∈ domQ(·,ξs)



L-shaped method kth iteration

Obj−cuti(x) =
∑S
s=1psπ

s,i >(hs−T sx) if xi ∈ domφ
Feas−cuts,i(x) = ηs,i >(hs−T sx) if xi 6∈ domQ(·,ξs)

Let

JkObj = {i < k : xi ∈ domφ}
and, for s= 1, . . . ,S Js,kFeas = {i < k : xi 6∈ domQ(·,ξs)



Then the 1st-stage problem has the form
min c>x+r

s.t. r≥ O−cuti(x) for i ∈ Jk−1Obj

0≥ F−cuts,i(x) for i ∈ Js,k−1Feas and s= 1, . . . ,S

x ∈ X



L-shaped method kth iteration

xk

1s
t-

st
ag

e
pr

ob
le

m

minx∈X c>x+r

r≥ O−cuti(x)

0≥ F−cuts,i(x)
and a sub-

φ(xk) gradient

Q(xk,ξ1)

or

U(xk,ξs)

Q(xk,ξS)

m
ax
π
>
(h
s
−
T
s
x
k
)
:W

>
π
≤
q
s

or
m

ax
η
>
(h
s
−
T
s
x
k
)
:W

>
η
≤
0
,‖
η
‖ ∗
≤
1



L-shaped method kth iteration

xk

1s
t-

st
ag

e
pr

ob
le

m

minx∈X c>x+r

r≥ O−cuti(x)

0≥ F−cuts,i(x)
and a sub-

φ(xk) gradient

Q(xk,ξ1)

or

U(xk,ξs)

Q(xk,ξS)

m
ax
π
>
(h
s
−
T
s
x
k
)
:W

>
π
≤
q
s

or
m

ax
η
>
(h
s
−
T
s
x
k
)
:W

>
η
≤
0
,‖
η
‖ ∗
≤
1

there is also a multi-cut variant


