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polyhedron

To minimize f (unavailable in an explicit manner), minimize its
model M(x) = max; {fi +g' T (x— xi)}

Improve the model at each iteration:

Mi1(x) = maxi<is {fi‘ngT(X—Xi)}
_ maX(Mk(X),fk—H—I—gk—HT(X—Xk—H))

K+1

where X' minimizes My

Instead of x* € argminy f(x) at one shot,

X1 € argminy My (x) BN M
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Cutting-plane methods for min, cx f(x), Xcom=

polyhedron

[My (x*t1)} increases but not necessarily the functional values:

f(x°) > f(x*). Stopping test measures &y := f(x*) — My_1 (x*)
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3 Set k=k+ 1 and loop to 1.
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Cutting-plane methods for min, cx f(x), Xcom=

polyhedron
0 Choose x! and set k =1 and My = —o0.
1 Call the oracle at x*.If &, = f* —M;_;(x*) < tol KIN0) 3
2 Build My (-) = maX(Mk_1 (), <4 g7 (- —xk)) and

Kk+1

compute X' € argminy My (x)

3 Setk =k+1 and loop to 1.

1. Vk 4 g (- —x) < My (1) < My () < ()
= My (x*1) < fx = minx f(x)

2. {My (x*t1)} is an increasing sequence

3. {x*} € X is a bounded sequence

# {dl am( 6 f (Xk) ) } S M Teorema 1.39 Otimizacdo II, Izmailov&Solodov
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Cutting-plane methods for min, cx f(x), Xcom=

polyhedron

Theorem Suppose f:IR™ — IR is convex and X is convex and
compact, and take tol = 0. Then

lim My (x*t1) = liminff(x*) = fx = min f(x)

Suppose, in addition, that f is polyhedral, so that

of(x) = conv{v',...,vP} for v € R™. OQ
'
If the oracle delivers as subgradients only Verf’z{‘ v!' (not a convex

combination), the method has finite termir L

AN

CP methods are Q>

an improvement over subgradient methods

CP methods are like caipirinha with a few drops of cachaca

can be improved!
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Cutting-plane methods: why not the best recipe

)
Non-monotone functional values, but converges

because liminf (fk — My (xk)) — 0

Has a stopping test, but LP size grows indefinitely

eventually il g1 R e e prevail.

My (x) = maxj<1 {f' +g' T (x —x)}

xk+1 € argminx My (x) with
and X polyhedral

1s equivalent to solving a linear programming problem

)
min 1

{ st. relR,xeX

R AR LR R VERd k crows with iterations
\
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Ingredients for the best recipe
e CP brings in the concept of a model, which gives a stopping test (dy)

e (P still non-monotone on f

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges

e Bundle Methods select green-spot iterates using a descent rule

Welington de Oliveira, later




Cutting-plane method for 2SLP with fixed
recourse (W not random)

1s called the

L-shaped method}

by Van Slyke and Wets.

Note: 1n Integer Programming, same 1deas are used for the
Benders Decomposition




Two-Stage LP with fixed RCR%, o ={u',...,wS)

min ¢' X+ ¢ (x) for X:={x>0:Ax =Db},
xeX

where & (x¥) = [ x,&} Zps (xK, &%) and

2

min g% 'y
< max 7t (hS —T5xK)
Q(x5E%)=¢ st. Wy=hs—-Tsxk =
=5 s.t. Win<qg®
y=

S
db(x¥) = —ZpSTS Targmax{TtT(hS —TxK) e ﬂ(qs)}

s=1

atoday: without Relative Complete Recourse (infeasibility yields ¢ (x¥) = 400)



Evaluating ¢ (x

Zps S

S

k T TSXk)

gives for free a subgradient v = — Z ps TS "> € 0p(x¥) and

the linearization

b(x)

>

<I>( )yt

ZPS TS kT
Zps S kT

s=1
(x—x*)

Tsk

h®> —T%x)

Zpsﬂ SKTTS (x —xK)

s=1



Graphically

minc 'x+¢(x)

x € X

1st-stage problem

>

b (X*) gradient

Q(xk,&h)

Q(x¥k,&>)

2nd-stage subproblems



L-shaped method kth iteration O Mt

Q(x*,&")

minc'x+My_1(x)

and a sub-

x e X d) (Xk) gradient

1st-stage problem

max7t' (h® —T5x¥): W< ¢°

Q(x¥,&3)



L-shaped method kth iteration

Q(x*k,&"
£ o
= .
o minc 'x+r
3 r> cutt(x),
<Yy . and a sub-
"g lék_] ’XEX d)(Xk) gradient
-
N
—
Q(x¥, &)

cuti(x) =Y 3 psm®tT(hS —T5x)

max7t' (h® —T5x¥): W< ¢°
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Finite termination if LP solver uses a simplex method (only vertices)

1st-stage problem

min ¢ 'x+r
r > cutt(x),

and a sub-

(1) (Xk) gradient

i<k—1,xeX

cuti(x) =Y 3 psm®tT(hS —T5x)

Q(x*,&")

max7t' (h® —T5x¥): W< ¢°

Q(x*,&>)



L-shaped method kth iteration

Finite termination if LP solver uses a simplex method (only vertices)

aslongas ¢ : IR™ — IR

1st-stage problem

minc 'x+r

r > cutt(x),

and a sub-

(1) (Xk) gradient

i<k—1,xeX

cuti(x) =Y 3 psm®tT(hS —T5x)

Q(x*,&")

max7t' (h® —T5x¥): W< ¢°

Q(x*,&>)



L-shaped method: what about infeasibility?

Qx¥, &)
£ X
= .
o min ¢ 'x-+r
3 r> cutt(x),
=Yy and a sub-
] 1 —
7 tsk—1 X €X (I)(Xk) gradient
-
N
o
Q(x¥, )

cutt(x) = Z§:1 petSt T(hs —TSx)

max7t' (h® —T5x¥): W < ¢g°



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

min g% 'y
Y e max 7t (h® —TSxK)
Q(x,&%) =< st. Wy=hs—-Tsxk =

s.t. Win<qg®

y >0

(
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(

min ||z||
U E5) =< st WylEZ4 = hs — Tsxk
y>0

\

x* & dom ¢ (just one Q(-, &) suffices) makes ¢ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such

points.

So far, we defined objective cuts , averaging linearizations for Q(-,&3):

Obj—cut(x) = ZSZ] Pt T(hs —TSx)

We’ll build BN 1I1HAAGITS

Feas — cut'(x) =linearization for U(-, &%)



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

( (

min ||z|| max 7' (hS—T8xK)
U(xM,E8)={ st WyE =hs —Tsx* =¢ st Wn<0
y=>0 il <1
\ \

x* & dom ¢ (just one Q(-, &) suffices) makes ¢ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such

points.

So far, we defined objective cuts , averaging linearizations for Q(-,&3):

Obj—cut(x) = ZSZ] Pt T(hs —TSx)

We’ll build BN 1I1HAAGITS

Feas — cut'(x) =linearization for U(-, &%)



L-shaped method: what about infeasibility?

Infeasibility in the primal formulation amounts to dual unboundedness

( (

min ||z|| max 7' (hS—T8xK)
UXSE) =< st. Wy=hs—T5xk =< st Wn<0
y=0 nfls <1
\ \

x* & dom ¢ (just one Q(-, &) suffices) makes ¢ extended-valued

Need to append the cutting-plane method with a procedure to cut-off such

points.

So far, we defined objective cuts , averaging linearizations for Q(-,&3):
Obj—cut(x) = 2321 Pt T(hs —TSx)

\WCRIRIGY feasibility cuts for each scenario s

Feas —cut®X(x) =15 T (h® —T*x) for s such that x* ¢ dom Q(-,&?)




L-shaped method: feasibility cuts

—domU(-, &%) =IR™ and U(+,&®) is polyhedral.
- Q(x,&°%) <400 &= U(x,&%) =0

— Polyhedral norm, £ or {,, gives LP (respective dual norms are {,, or

¢1)
— When x* ¢ dom Q(+, &%), commercial solvers like Gurobi or CPLEX

give 1> X directly, without having to solve an additional LP (“recession

direction").
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—domU(-, &%) =IR™ and U(+,&®) is polyhedral.
- Q(x,&°%) <400 &= U(x,&%) =0

vx € domQ(+, &%) Feas —Cut>®(x) <0

— Polyhedral norm, £ or {,, gives LP (respective dual norms are {,, or

¢1)
— When x* ¢ dom Q(+, &%), commercial solvers like Gurobi or CPLEX

give 1> X directly, without having to solve an additional LP (“recession

direction").



L-shaped method: convergence

Like we saw for the cutting-plane method for f : IR™ — IR,
the method has finite termination:

Now f(x) =c'x+ ¢(x) is defined on the extended reals, but
epiQ(+, &%) is a closed convex polyhedron and its
intersection with the compact X can be characterized by a
finite number of basic objective and feasibility cuts. of the

form
Obj—cutl(x) = Z§:1 ps7® (A —T%x) if x' € dom
Feas —cut®(x) = n®' T (h®$—T5) if x* ¢ domQ(-,&°)



L-shaped method kth iteration

Obj—cut!(x) = Z§:1psﬂs>”(hS—TSx) if x* € domd
Feas —cut®(x) = n®' T (h®$—T) if x* ¢ domQ(-, &%)
Let
‘ébj — {i<k:x'edomdo)}
and, fors=1,...,S J¥* = {i<k:x*¢domQ(-&?)



L-shaped method kth iteration

Obj—cut!(x) = Z§:1psﬂs>”(hS—TSx) if x* € domd
Feas —cut®(x) = n®' T (h®$—T) if x* ¢ domQ(-, &%)
Let
‘ébj — {i<k:x'edomdo)}
and, fors=1,...,S J¥* = {i<k:x*¢domQ(-&?)



Then the 1st-stage problem has the form

y

min c¢'x+r
st. T>0—cutl(x) forie IObJ
< 0>F—cut(x) forie ]f;eka;
x € X

and s =1,...



L-shaped method kth iteration

Minyex C X+
r>0—cutt(x)

and a sub-

(b (Xk) gradient

0>F—cut®>(x)

1st-stage problem

Q(xk,&h)

or

U(x¥, &%)

max7t' (h® —T5x¥): W't < ¢°
or maxm' (h® —T5x%):WTn <0, |n|. <1



L-shaped method kth iteration

Minyex C X+
r>0—cut(x)

. SIa
0>F—cut®'(x) (I)(Xk)gradient

1st-stage problem

there is also a multi-cut variant

and a sub-

Q(xk,&h)

or

max7t' (h® —T5x¥): W't < ¢°
or maxn' (h® —T5x*) : W'n <0,|n|l <1



