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Cutting-plane methods for minx∈X f(x), Xcompact

polyhedron

{Mk(x
k+1)} increases but not necessarily the functional values:

f(x5)> f(x4). Stopping test measures δk := f(xk)−Mk−1(x
k)

}
δ2
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)

and

compute xk+1 ∈ argminXMk(x)

3 Set k= k+1 and loop to 1.
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Ingredients for the best recipe
• CP brings in the concept of a model, which gives a stopping test (δk)

• CP still non-monotone on f

Monotonicity defeats instability and oscillations: the sequence of function
values at green-spot iterates converges

• Bundle Methods select green-spot iterates using a descent rule
a good recipe! Welington de Oliveira, later



Cutting-plane method for 2SLP with fixed

recourse (W not random)

is called the

L-shaped method ,
by Van Slyke and Wets.

Note: in Integer Programming, same ideas are used for the
Benders Decomposition



Two-Stage LP with fixed RCRa, Ω= {ω1, . . . ,ωS}

min
x∈X

c>x+φ(x) for X := {x≥ 0 : Ax = b} ,

where φ(xk)=E
[
Q(xk,ξ)

]
=

S∑
s=1

psQ(xk,ξs) and

Q(xk,ξs)=


min qs >y

s.t. Wy= hs−Tsxk

y≥ 0

=

 max π>(hs−Tsxk)

s.t. W>π≤ qs

∂φ(xk) = −

S∑
s=1

psT
s > argmax

{
π>(hs−Tsxk) : π ∈ Π(qs)

}

atoday: without Relative Complete Recourse (infeasibility yields φ(xk) = +∞)



Evaluating φ(xk) =
S∑
s=1

psπ
s,k >(hs−T sxk)

gives for free a subgradient γk =−

S∑
s=1

psT
s >πs,k ∈ ∂φ(xk) and

the linearization

φ(x) ≥ φ(xk)+γk >(x−xk)

=

S∑
s=1

psπ
s,k >(hs−Tsxk)−

S∑
s=1

psπ
s,k >Ts(x−xk)

=

S∑
s=1

psπ
s,k >(hs−Tsx)
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L-shaped method kth iteration replacesφ byMk−1
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L-shaped method: feasibility cuts
– domU(·,ξs) = IRn and U(·,ξs) is polyhedral.

– Q(x,ξs)<+∞ ⇐⇒ U(x,ξs) = 0

∀x ∈ domQ(·,ξs) Feas−Cuts,k(x)≤ 0

– Polyhedral norm, `1 or `∞, gives LP (respective dual norms are `∞ or
`1)

– When xk 6∈ domQ(·,ξs), commercial solvers like Gurobi or CPLEX
give ηs,k directly, without having to solve an additional LP (“recession
direction").
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L-shaped method: convergence

Like we saw for the cutting-plane method for f : IRn→ IR,
the method has finite termination:

Now f(x) = c>x+φ(x) is defined on the extended reals, but
epiQ(·,ξs) is a closed convex polyhedron and its
intersection with the compact X can be characterized by a
finite number of basic objective and feasibility cuts. of the
form

Obj−cuti(x) =
∑S
s=1psπ

s,i >(hs−T sx) if xi ∈ domφ
Feas−cuts,i(x) = ηs,i >(hs−T sx) if xi 6∈ domQ(·,ξs)
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Then the 1st-stage problem has the form
min c>x+r

s.t. r≥ O−cuti(x) for i ∈ Jk−1Obj

0≥ F−cuts,i(x) for i ∈ Js,k−1Feas and s= 1, . . . ,S

x ∈ X
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there is also a multi-cut variant


