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Motivation

Suppose that we have a Brownian motion 1/ in one
dimension, and we wish to control it, using controls [, with
values in the set [0, d].



Motivation

Suppose that we have a Brownian motion 1/ in one
dimension, and we wish to control it, using controls [, with
values in the set [0, d].

The dynamics of the controlled process U are described as
t
Ut = Wt +/ k(ls)ds, UO =X,
0

for some function k.

The controller has some objective in mind



continuation...

The controller has as objective to minimize the functional

o(z,1) = E VOOO eqth(Ut,lt)dt} |

for a given running cost function h.



continuation...

The controller has as objective to minimize the functional

o(z,1) = E { /O h eqth(Ut,lt)dt} |

for a given running cost function h.

It is well known that this problem is related with the HJB
equation

;vm(x) + min {k(l)v,(x) + h(x, 1)} — qu(x) = 0.

1€[0,6]



Verification...

If a smooth solution of the HJB equation can be found, we
can propose as a candidate for optimal control

l(x) = argminiep,s{k()ve(x) + h(z, 1)}



Verification...

If a smooth solution of the HJB equation can be found, we
can propose as a candidate for optimal control

l(x) = argminiep,s{k()ve(x) + h(z, 1)}

» Problem: Under which conditions on the data of this
optimization problem is it possible to obtain a
simple solution.

» Thatis, on h, k6,....




Singular control

Suppose that we change now the dynamics for
Ui=Wit [ dl, Uy=as,
[0,2]

where [ is a nondecreasing, left continuous process with
lo = 0, with an analogous structure in the cost function.

» For this problem we have some how a "simple solution”,
finding a solution of a free boundary problem, and
reflecting the process in the boundary.

» Question: Is it possible to have something analogous for
the above problem.



Controlling a Lévy processes

Let (2, F,P) be a probability space hosting a spectrally
negative Lévy process X = {X;;t > 0}.

The Laplace exponent of X is given by

¥(0) = logE[e""]

2
= 0+ %«92 —|—/ (" —1—021p-_13yv(d2), 6> 0.
(_0070)

Here v is a Lévy measure with support in (—o0,0) and
satisfying the integrability condition

/ (1A 2*)r(dz) < oco.
(00,0



Remarks on X

» It has paths of bounded variation if and only if ¢ = 0 and
f(fl,O) |z|v(dz) < o0
» In this case, we write the Laplace exponent as

Y(0) =76 +/ (e —1)v(dz), >0,
(70070)
with 7 := v — f(—1,0) zv(dz).
» We exclude the case in which X is the negative of a

subordinator (i.e., X has monotone paths a.s.). This
assumption implies that

» Let F:= {F;;t > 0} be the filtration generated by X.



Formulation of the control problem

» Fix 8 € R, § > 0 and a measurable function h : R — R.
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» Define Il as the set of absolutely continuous strategies
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Formulation of the control problem

» Fix 8 € R, § > 0 and a measurable function h : R — R.

» Define Il as the set of absolutely continuous strategies
given by adapted processes LT = f(f (Tds, t > 0, with ("
restricted to take values in [0, §] uniformly in time.

» For g > 0 fixed, the objective is to consider the net
present value (NPV) of the expected total costs

ve(z) = E, [/000 e (h(UT) + Bﬁg)dt] (1)



Objectives
The state process is
Ul =X, — L7, t>0,
and the objective is to compute the (optimal) value function

v(x) = inf vy(x), z€R, (2)

mells

as well as the optimal strategy that attains it, if such a
strategy exists.



Hypotheses

1. When X is of bounded variation, we assume that
v —4d>0.

2. We assume that there exists

3. We assume

That is to say, there exist m, k > 0
and N € N such that h(x) < k|z|" for all z € R such
that |z| > m.



Remarks and equivalent problem

» The drift-changed Lévy process
Y, =X, —0t, t>0, (3)

is the resulting controlled process if £™ is uniformly set to
be the maximal value 9, and is again a spectrally negative
Lévy process.

» The cost function v, as in (1) is well-defined and finite
for all w € 1l;.



Remarks and equivalent problem

» The drift-changed Lévy process
Y, =X, —0t, t>0, (3)

is the resulting controlled process if £™ is uniformly set to
be the maximal value 9, and is again a spectrally negative
Lévy process.

» The cost function v, as in (1) is well-defined and finite
for all w € 1l;.

» We can also consider a version of this problem where a

linear drift is added to the increments of X (
): one wants to minimize, for some

B € R, the NPV

Bn(2) = E, [ /0 T et (h(X, + L) + Bz;f)dt] .



Continuation...

o> Claim: This problem is equivalent to the problem described
above.

e We use Y as in (3) and set LT := §t — LT

e Then, we can write

() = E, [/Ooo e (h(Y, — LT) — Bég)dt] + %

Hence it is equivalent to solving our problem for g := —B



Problems in mind

» X; may represent the inventory level of some company.

» The objective of the company can be to maintain the
inventory level around some target .

» The running cost function i can be used to penalized the
distance between X; and z.

» The inventory can be on commodity products, such as oil,
coal, water, etc.

» Inventory of shares in a particular company held by a
specialist who is responsible for trading in that company’s
shares. An impact of selling in the asset’s price can also
be included.



Refraction strategies

Say 7 € IIs, under which the controlled process becomes the
refracted Lévy process U’ = {U?;t > 0}, with a suitable
choice of the refraction boundary b € R.

AU} = dX;, — 61 ypopydt, >0,

> U® progresses like X below the boundary b while it does like
Y above b.

> the total costs associated to 7° is

vp(z) =E, [/OOO e "(h(UY) + 551{Ub>b})dt] reR. (4)



Introduction to scale functions

> The NPV (4) can be expressed in terms of the scale
functions of the two spectrally negative Lévy processes X and
Y.

> We use W9 and W@ for the scale functions of X and Y,
respectively.

> These are mappings from R to [0, 00) that take value zero
on the negative half-line, while on the positive half-line they
are



Continuation...

where
®(q) :=sup{A > 0:¢(\) = q}

and
©(q) :=sup{A > 0 : (X)) — A = ¢}.

> By the strict convexity of 1, we derive the strict inequality
w(q) > (q) > 0.



Resolvent measure

Ry(x.B) i= g 'P.{UL, € B} = E| / M pemdt], B € B(R
0

admits a density
Ry(x,dy) = (" (2. y) + 1,7 (2, 9)Lieoy)dy, y €R, (6)

given in terms of the scale functions.

We can also write

() = 0 (2) + v (2) Lz, (7)



First order condition

%vb(x) = uy(z),

where

up(z) = E, [/000 e n'(UNYAt| —vy(x), = #Db.

Note: The first-order condition Jv,(x)/0b|p—p = 0 is a
necessary condition for the optimality of the refraction
strategy 7. Then, if such b* exists,

l‘[l)w (() — E({/ ’Ci(ﬁh%ZJfV)d/}'
JO



Preliminary results
Proposition

For all x,b € R such that x # b,

u(7) = [%@?@e‘”q“””b) + Loy (M (;0) = W (3 — b)) |

Example: For the case h(y) := ay?, y € R, for some a > 0,

b" = Bq/(20) + B(—X, ) — o(q)



Continuation...

In this case,

_ o, Pla) %) [ —
10)=20"200 /0 W+

0 oo
) [2@/ (y+0b) / e D20 (1 — y)dady — f——2
—00 0

Here,

ydy+

) — ®(q)

®(q)
v(q)

|

olq) —®(q) [ @Yy — ©(q
©(q) /0 v+0) 4

©(q)



Another example

For the case
h(y) :==ay, y€R,

for some o« € R, we have b* = —oco when

alq>f

and b* = oo otherwise.



Let I' be the operator acting on sufficiently smooth functions
f, defined by

L (o) o= (@) + G 1)+

/(— 0) [f(z+2) = f2) = [(2)21 (c1cacoplv(d2).

Lemma (Verification)

Suppose a strategy m € 1l is such that v; is sufficiently
smooth on R and satisfies

{(F —q)vz(x) + h(z) >0 if vi(z) < B,
(T = q)un(z) — 8(44(2) — ) + h(z) 2 0 if vl () > 6.
(9)

Then 7 is an optimal strategy and v(z) = vz(x) for all x € R.



Applying the previous result

> It suffices to show that the function vy is sufficiently
smooth and satisfies (9).

> The function vy« is sufficiently smooth.

> The inequalities (9) for v;: = v, hold if and only if

(10)

v (z) > B if x> b,
v () < B if o < b*.

> The function v+ is convex.
> The function vy satisfies (9).



Main result

Theorem

The strategy 7" is optimal and the value function is given by
v(x) = vy () for all z € R.
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Main result

Theorem

The strategy 7" is optimal and the value function is given by
v(x) = vy () for all z € R.

Together with the analysis when § — oo. Recall that

(a:0) = inf | / e (h(Y, + LT) + A7)t
o 7 (11)
=v(z; 9, =) + —,
q

where v(z; 8, —3) is the value function (2) obtained previously
with X, replaced with Xt(‘s) := Y, + 6t and 3 with —J3.



Limit problem

> Let 11, be the set of admissible strategies consisting of all
right-continuous, nondecreasing and adapted processes L™
with L§_ = 0.

>

0(x;00) := Inf E, [/ e " (h(Y; + L7)dt + Bde)]
[0,00)

ﬂ'EHoo

> The infimum is attained by the reflected Lévy process
b*(c0) .
Y, + L, with

LY = sup ((67(00)) = Vi) VO, 20,

0<t/<t



Continuation...

The lower boundary b*(c0) is defined as the unique root of
Io(b) = 0 where

I.(b) = T W+ be-r@vg 34 peRrR. (12
0 / by + 5 ber (1)



Continuation...

The lower boundary b*(c0) is defined as the unique root of
Io(b) = 0 where

— Y —¢(a)y 3.9
I (D) : /0 h'(y + b)e™* dy—l—ﬁg)(q), beR. (12)

Summarizing: We show the convergences of b*(d) to b*(o0)

and 0(z;9) to v(x;00) as d 1 oc.



Numerical results

We focus in the case h(x) = x2, with ¢ = .05 and for the size
type distribution we approximate a Weibull random variable.
Plots of vy(z) for the cases § = 5. Each panel shows v« ()
(solid) in comparison to v,(x) (dotted) for different values of




Continuation...

Plots of convergence as § — oo.
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