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Motivation

Suppose that we have a Brownian motion W in one
dimension, and we wish to control it, using controls lt with
values in the set [0, δ].

The dynamics of the controlled process U are described as

Ut = Wt +

∫ t

0

k(ls)ds, U0 = x,

for some function k.

The controller has some objective in mind
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continuation...

The controller has as objective to minimize the functional

v(x, l·) = E
[∫ ∞

0

e−qth(Ut, lt)dt

]
,

for a given running cost function h.

It is well known that this problem is related with the HJB
equation

1

2
vxx(x) + mı́n

l∈[0,δ]
{k(l)vx(x) + h(x, l)} − qv(x) = 0.
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Verification...

If a smooth solution of the HJB equation can be found, we
can propose as a candidate for optimal control

l(x) = argminl∈[0,δ]{k(l)vx(x) + h(x, l)}.

I Problem: Under which conditions on the data of this
optimization problem is it possible to obtain a
simple solution.

I That is, on h, k δ, . . ..
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Singular control

Suppose that we change now the dynamics for

Ut = Wt +

∫
[0,t]

dls, U0 = x,

where ls is a nondecreasing, left continuous process with
l0 = 0, with an analogous structure in the cost function.

I For this problem we have some how a ”simple solution”,
finding a solution of a free boundary problem, and
reflecting the process in the boundary.

I Question: Is it possible to have something analogous for
the above problem.



Controlling a Lévy processes

Let (Ω,F ,P) be a probability space hosting a spectrally
negative Lévy process X = {Xt; t ≥ 0}.

The Laplace exponent of X is given by

ψ(θ) := logE[eθX1 ]

= γθ +
σ2

2
θ2 +

∫
(−∞,0)

(eθz − 1− θz1{z>−1})ν(dz), θ ≥ 0.

Here ν is a Lévy measure with support in (−∞, 0) and
satisfying the integrability condition∫

(−∞,0)

(1 ∧ z2)ν(dz) <∞.



Remarks on X

I It has paths of bounded variation if and only if σ = 0 and∫
(−1,0)

|z| ν(dz) <∞
I In this case, we write the Laplace exponent as

ψ(θ) = γ̃θ +

∫
(−∞,0)

(eθz − 1)ν(dz), θ ≥ 0,

with γ̃ := γ −
∫

(−1,0)
z ν(dz).

I We exclude the case in which X is the negative of a
subordinator (i.e., X has monotone paths a.s.). This
assumption implies that γ̃ > 0 when X is of bounded
variation.

I Let F := {Ft; t ≥ 0} be the filtration generated by X.



Formulation of the control problem

I Fix β ∈ R, δ > 0 and a measurable function h : R→ R.

I Define Πδ as the set of absolutely continuous strategies π
given by adapted processes Lπt =

∫ t
0
`πsds, t ≥ 0, with `π

restricted to take values in [0, δ] uniformly in time.

I For q > 0 fixed, the objective is to consider the net
present value (NPV) of the expected total costs

vπ(x) := Ex
[ ∫ ∞

0

e−qt(h(Uπ
t ) + β`πt )dt

]
. (1)
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Objectives

The state process is

Uπ
t := Xt − Lπt , t ≥ 0,

and the objective is to compute the (optimal) value function

v(x) := ı́nf
π∈Πδ

vπ(x), x ∈ R, (2)

as well as the optimal strategy that attains it, if such a
strategy exists.



Hypotheses

1. When X is of bounded variation, we assume that
γ̃ − δ > 0.

2. We assume that there exists θ̄ > 0 such that∫
(−∞,−1]

exp(θ̄|z|)ν(dz) <∞.

3. We assume h is convex and has at most polynomial
growth in the tail. That is to say, there exist m, k > 0
and N ∈ N such that h(x) ≤ k|x|N for all x ∈ R such
that |x| > m.



Remarks and equivalent problem

I The drift-changed Lévy process

Yt := Xt − δt, t ≥ 0, (3)

is the resulting controlled process if `π is uniformly set to
be the maximal value δ, and is again a spectrally negative
Lévy process.

I The cost function vπ as in (1) is well-defined and finite
for all π ∈ Πδ.

I We can also consider a version of this problem where a
linear drift is added to the increments of X (as opposed
to be subtracted): one wants to minimize, for some
β̃ ∈ R, the NPV

ṽπ(x) := Ex
[ ∫ ∞

0

e−qt(h(Xt + Lπt ) + β̃`πt )dt
]
.
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Continuation...

B Claim: This problem is equivalent to the problem described
above.

• We use Y as in (3) and set L̃πt := δt− Lπt

• Then, we can write

ṽπ(x) = Ex
[ ∫ ∞

0

e−qt(h(Yt − L̃πt )− β̃ ˜̀π
t )dt

]
+
β̃δ

q
.

Hence it is equivalent to solving our problem for β := −β̃



Problems in mind

I Xt may represent the inventory level of some company.

I The objective of the company can be to maintain the
inventory level around some target x̂.

I The running cost function h can be used to penalized the
distance between Xt and x̂.

I The inventory can be on commodity products, such as oil,
coal, water, etc.

I Inventory of shares in a particular company held by a
specialist who is responsible for trading in that company’s
shares. An impact of selling in the asset’s price can also
be included.



Refraction strategies

Say πb ∈ Πδ, under which the controlled process becomes the
refracted Lévy process U b = {U b

t ; t ≥ 0}, with a suitable
choice of the refraction boundary b ∈ R. This is a strong
Markov process given by the unique strong solution to the SDE

dU b
t = dXt − δ1{Ubt>b}dt, t ≥ 0.

B U b progresses like X below the boundary b while it does like
Y above b.

B the total costs associated to πb is

vb(x) := Ex
[ ∫ ∞

0

e−qt(h(U b
t ) + βδ1{Ubt>b})dt

]
, x ∈ R. (4)



Introduction to scale functions

B The NPV (4) can be expressed in terms of the scale
functions of the two spectrally negative Lévy processes X and
Y .
B We use W (q) and W(q) for the scale functions of X and Y ,
respectively.

B These are mappings from R to [0,∞) that take value zero
on the negative half-line, while on the positive half-line they
are strictly increasing functions that are defined by their
Laplace transforms:∫ ∞

0

e−θxW (q)(x)dx =
1

ψ(θ)− q
, θ > Φ(q),∫ ∞

0

e−θxW(q)(x)dx =
1

ψ(θ)− δθ − q
, θ > ϕ(q),

(5)



Continuation...

where
Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}

and
ϕ(q) := sup{λ ≥ 0 : ψ(λ)− δλ = q}.

B By the strict convexity of ψ, we derive the strict inequality
ϕ(q) > Φ(q) > 0.



Resolvent measure

Rb(x,B) := q−1Px{U b
eq ∈ B} = Ex

[ ∫ ∞
0

e−qt1{Ubt ∈B}dt
]
, B ∈ B(R),

admits a density

Rb(x, dy) = (r
(1)
b (x, y) + r

(2)
b (x, y)1{x>b})dy, y ∈ R, (6)

given in terms of the scale functions.

We can also write

vb(x) = v
(1)
b (x) + v

(2)
b (x)1{x>b}, (7)



First order condition

∂

∂b
vb(x) = ub(x), (8)

where

ub(x) := Ex
[ ∫ ∞

0

e−qth′(U b
t )dt

]
− v′b(x), x 6= b.

Note: The first-order condition ∂vb(x)/∂b|b=b∗ = 0 is a
necessary condition for the optimality of the refraction
strategy πb

∗
. Then, if such b∗ exists,

v′b∗(x) = Ex[
∫ ∞

0

e−qth′(U b∗

t )dt].



Preliminary results

Proposition

For all x, b ∈ R such that x 6= b,

ub(x) =
[ϕ(q)− Φ(q)

δΦ(q)
eΦ(q)(x−b) + 1{x>b}(M(x; b)−W(q)(x− b))

]
·

I(b).

Example: For the case h(y) := αy2, y ∈ R, for some α > 0,

b∗ = βq/(2α) + E(−Xeq)− ϕ(q)−1.



Continuation...

In this case,

I(b) = 2α
ϕ(q)− Φ(q)

ϕ(q)

∫ ∞
0

(y + b)e−ϕ(q)ydy+

δ
[
2α

∫ 0

−∞
(y + b)

∫ ∞
0

e−ϕ(q)zΘ(q)(z − y)dzdy − βΦ(q)

ϕ(q)

]
.

Here,

ϕ(q)− Φ(q)

ϕ(q)

∫ ∞
0

(y + b)e−ϕ(q)ydy =
ϕ(q)− Φ(q)

ϕ(q)

( 1

ϕ(q)2
+

b

ϕ(q)

)
.



Another example

For the case
h(y) := αy, y ∈ R,

for some α ∈ R, we have b∗ = −∞ when

α/q > β

and b∗ =∞ otherwise.



Let Γ be the operator acting on sufficiently smooth functions
f , defined by

Γf(x) := γf ′(x) +
σ2

2
f ′′(x)+∫

(−∞,0)

[f(x+ z)− f(x)− f ′(x)z1{−1<z<0}]ν(dz).

Lemma (Verification)

Suppose a strategy π̂ ∈ Πδ is such that vπ̂ is sufficiently
smooth on R and satisfies{

(Γ− q)vπ̂(x) + h(x) ≥ 0 if v′π̂(x) ≤ β,

(Γ− q)vπ̂(x)− δ(v′π̂(x)− β) + h(x) ≥ 0 if v′π̂(x) > β.

(9)
Then π̂ is an optimal strategy and v(x) = vπ̂(x) for all x ∈ R.



Applying the previous result

B It suffices to show that the function vb∗ is sufficiently
smooth and satisfies (9).

B The function vb∗ is sufficiently smooth.

B The inequalities (9) for vπ̂ = vb∗ hold if and only if{
v′b∗(x) ≥ β if x > b∗,

v′b∗(x) ≤ β if x ≤ b∗.
(10)

B The function vb∗ is convex.
B The function vb∗ satisfies (9).



Main result

Theorem

The strategy πb
∗

is optimal and the value function is given by
v(x) = vb∗(x) for all x ∈ R.

Together with the analysis when δ →∞. Recall that

ṽ(x; δ) := ı́nf
π∈Πδ

Ex
[ ∫ ∞

0

e−qt(h(Yt + Lπt ) + β̃`πt )dt
]

= v(x; δ,−β̃) +
β̃δ

q
,

(11)

where v(x; δ,−β̃) is the value function (2) obtained previously

with Xt replaced with X
(δ)
t := Yt + δt and β with −β̃.
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Limit problem

B Let Π∞ be the set of admissible strategies consisting of all
right-continuous, nondecreasing and adapted processes Lπ

with Lπ0− = 0.

B

ṽ(x;∞) := ı́nf
π∈Π∞

Ex
[ ∫

[0,∞)

e−qt(h(Yt + Lπt )dt+ β̃dLπt )
]

B The infimum is attained by the reflected Lévy process
Yt + L

b∗(∞)
t with

L
b∗(∞)
t := sup

0≤t′≤t
((b∗(∞))− Yt′) ∨ 0, t ≥ 0.



Continuation...

The lower boundary b∗(∞) is defined as the unique root of
I∞(b) = 0 where

I∞(b) :=

∫ ∞
0

h′(y + b)e−ϕ(q)ydy + β̃
q

ϕ(q)
, b ∈ R. (12)

Summarizing: We show the convergences of b∗(δ) to b∗(∞)

and ṽ(x; δ) to ṽ(x;∞) as δ ↑ ∞.
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Numerical results

We focus in the case h(x) = x2, with q = .05 and for the size
type distribution we approximate a Weibull random variable.
Plots of vb(x) for the cases β = 5. Each panel shows vb∗(x)
(solid) in comparison to vb(x) (dotted) for different values of β
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Continuation...

Plots of convergence as δ →∞.
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one-sided Lévy processes. Stochastic Process. Appl. 2015.

I D. Hernández-Hernández, J.L. Pérez and K. Yamazaki.
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