Optimality of refraction strategies for Lévy processes

Daniel Hernández-Hernández Research Center for Mathematics (CIMAT) Mexico

joint work with J.L. Pérez and K. Yamazaki

28 de marzo de 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introduction: Motivation and framework

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Control problem
- First order conditions
- Limit results
- Singular control problem
- Numerical results

Motivation

Suppose that we have a Brownian motion W in one dimension, and we wish to control it, using controls l_t with values in the set $[0, \delta]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation

Suppose that we have a Brownian motion W in one dimension, and we wish to control it, using controls l_t with values in the set $[0, \delta]$.

The dynamics of the controlled process \boldsymbol{U} are described as

$$U_t = W_t + \int_0^t k(l_s)ds, \quad U_0 = x,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for some function k.

The controller has some objective in mind

continuation...

The controller has as objective to minimize the functional

$$v(x,l_{\cdot}) = \mathbb{E}\left[\int_{0}^{\infty} e^{-qt} h(U_{t},l_{t}) dt\right],$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for a given running cost function h.

continuation...

The controller has as objective to minimize the functional

$$v(x, l_{\cdot}) = \mathbb{E}\left[\int_{0}^{\infty} e^{-qt} h(U_t, l_t) dt\right],$$

for a given running cost function h.

 $\underline{\mathsf{It} \text{ is well known}}$ that this problem is related with the HJB equation

$$\frac{1}{2}v_{xx}(x) + \min_{l \in [0,\delta]} \{k(l)v_x(x) + h(x,l)\} - qv(x) = 0.$$

Verification...

If a smooth solution of the HJB equation can be found, we can propose as a candidate for optimal control

$$l(x) = argmin_{l \in [0,\delta]} \{k(l)v_x(x) + h(x,l)\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Verification...

If a smooth solution of the HJB equation can be found, we can propose as a candidate for optimal control

$$l(x) = argmin_{l \in [0,\delta]} \{k(l)v_x(x) + h(x,l)\}.$$

 Problem: Under which conditions on the data of this optimization problem is it possible to obtain a simple solution.

• That is, on $h, k \delta, \ldots$

Singular control

Suppose that we change now the dynamics for

$$U_t = W_t + \int_{[0,t]} dl_s, \quad U_0 = x,$$

where l_s is a nondecreasing, left continuous process with $l_0 = 0$, with an analogous structure in the cost function.

- For this problem we have some how a "simple solution", finding a solution of a free boundary problem, and reflecting the process in the boundary.
- Question: Is it possible to have something analogous for the above problem.

Controlling a Lévy processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space hosting a *spectrally* negative Lévy process $X = \{X_t; t \ge 0\}$.

The *Laplace exponent* of X is given by

$$\begin{split} \psi(\theta) &:= \log \mathbb{E}[\mathrm{e}^{\theta X_1}] \\ &= \gamma \theta + \frac{\sigma^2}{2} \theta^2 + \int_{(-\infty,0)} (\mathrm{e}^{\theta z} - 1 - \theta z \mathbf{1}_{\{z > -1\}}) \nu(\mathrm{d}z), \ \theta \ge 0. \end{split}$$

Here ν is a Lévy measure with support in $(-\infty, 0)$ and satisfying the integrability condition

$$\int_{(-\infty,0)} (1 \wedge z^2) \nu(\mathrm{d}z) < \infty.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks on X

- ▶ It has paths of bounded variation if and only if $\sigma = 0$ and $\int_{(-1,0)} |z| \nu(dz) < \infty$
- In this case, we write the Laplace exponent as

$$\psi(\theta) = \tilde{\gamma}\theta + \int_{(-\infty,0)} (e^{\theta z} - 1)\nu(dz), \quad \theta \ge 0,$$

with
$$\tilde{\gamma} := \gamma - \int_{(-1,0)} z \,\nu(\mathrm{d}z).$$

- ► We exclude the case in which X is the negative of a subordinator (i.e., X has monotone paths a.s.). This assumption implies that \$\tilde{\gamma}\$ > 0 when X is of bounded variation.
- Let $\mathbb{F} := \{\mathcal{F}_t; t \ge 0\}$ be the filtration generated by X.

Formulation of the control problem

Fix $\beta \in \mathbb{R}$, $\delta > 0$ and a measurable function $h : \mathbb{R} \to \mathbb{R}$.

Formulation of the control problem

- Fix $\beta \in \mathbb{R}$, $\delta > 0$ and a measurable function $h : \mathbb{R} \to \mathbb{R}$.
- Define Π_{δ} as the set of *absolutely continuous strategies* π given by adapted processes $L_t^{\pi} = \int_0^t \ell_s^{\pi} ds$, $t \ge 0$, with ℓ^{π} restricted to take values in $[0, \delta]$ uniformly in time.

Formulation of the control problem

- Fix $\beta \in \mathbb{R}$, $\delta > 0$ and a measurable function $h : \mathbb{R} \to \mathbb{R}$.
- Define Π_{δ} as the set of *absolutely continuous strategies* π given by adapted processes $L_t^{\pi} = \int_0^t \ell_s^{\pi} ds$, $t \ge 0$, with ℓ^{π} restricted to take values in $[0, \delta]$ uniformly in time.
- For q > 0 fixed, the objective is to consider the net present value (NPV) of the expected total costs

$$v_{\pi}(x) := \mathbb{E}_x \Big[\int_0^\infty \mathrm{e}^{-qt} (h(U_t^{\pi}) + \beta \ell_t^{\pi}) \mathrm{d}t \Big].$$
 (1)

Objectives

The state process is

$$U_t^{\pi} := X_t - L_t^{\pi}, \quad t \ge 0,$$

and the objective is to compute the (optimal) value function

$$v(x) := \inf_{\pi \in \Pi_{\delta}} v_{\pi}(x), \quad x \in \mathbb{R},$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

as well as the optimal strategy that attains it, if such a strategy exists.

Hypotheses

- 1. When X is of bounded variation, we assume that $\tilde{\gamma} \delta > 0.$
- 2. We assume that there exists $\bar{\theta} > 0$ such that $\int_{(-\infty,-1]} \exp(\bar{\theta}|z|)\nu(\mathrm{d}z) < \infty.$
- 3. We assume h is convex and has at most polynomial growth in the tail. That is to say, there exist m, k > 0 and $N \in \mathbb{N}$ such that $h(x) \leq k|x|^N$ for all $x \in \mathbb{R}$ such that |x| > m.

Remarks and equivalent problem

The drift-changed Lévy process

$$Y_t := X_t - \delta t, \quad t \ge 0, \tag{3}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is the resulting controlled process if ℓ^{π} is uniformly set to be the maximal value δ , and is again a spectrally negative Lévy process.

The cost function v_π as in (1) is well-defined and finite for all π ∈ Π_δ.

Remarks and equivalent problem

The drift-changed Lévy process

$$Y_t := X_t - \delta t, \quad t \ge 0, \tag{3}$$

is the resulting controlled process if ℓ^{π} is uniformly set to be the maximal value δ , and is again a spectrally negative Lévy process.

- The cost function v_π as in (1) is well-defined and finite for all π ∈ Π_δ.
- We can also consider a version of this problem where a linear drift is added to the increments of X (as opposed to be subtracted): one wants to minimize, for some β̃ ∈ ℝ, the NPV

$$\tilde{v}_{\pi}(x) := \mathbb{E}_x \Big[\int_0^\infty e^{-qt} (h(X_t + L_t^{\pi}) + \tilde{\beta}\ell_t^{\pi}) dt \Big].$$

Continuation...

▷ Claim: This problem is equivalent to the problem described above.

- We use Y as in (3) and set $\tilde{L}_t^{\pi} := \delta t L_t^{\pi}$
- Then, we can write

$$\tilde{v}_{\pi}(x) = \mathbb{E}_{x} \left[\int_{0}^{\infty} e^{-qt} (h(Y_{t} - \tilde{L}_{t}^{\pi}) - \tilde{\beta}\tilde{\ell}_{t}^{\pi}) dt \right] + \frac{\tilde{\beta}\delta}{q}.$$

Hence it is equivalent to solving our problem for $\beta:=-\tilde{\beta}$

Problems in mind

- X_t may represent the inventory level of some company.
- ► The objective of the company can be to maintain the inventory level around some target x̂.
- ► The running cost function h can be used to penalized the distance between X_t and x̂.
- The inventory can be on commodity products, such as oil, coal, water, etc.
- Inventory of shares in a particular company held by a specialist who is responsible for trading in that company's shares. An impact of selling in the asset's price can also be included.

Refraction strategies

Say $\pi^b \in \Pi_{\delta}$, under which the controlled process becomes the refracted Lévy process $U^b = \{U_t^b; t \ge 0\}$, with a suitable choice of the refraction boundary $b \in \mathbb{R}$. This is a strong Markov process given by the unique strong solution to the SDE

$$\mathrm{d}U_t^b = \mathrm{d}X_t - \delta \mathbf{1}_{\{U_t^b > b\}} \mathrm{d}t, \quad t \ge 0.$$

 $\triangleright U^b$ progresses like X below the boundary b while it does like Y above b.

 \triangleright the total costs associated to π^b is

$$v_b(x) := \mathbb{E}_x \Big[\int_0^\infty e^{-qt} (h(U_t^b) + \beta \delta \mathbf{1}_{\{U_t^b > b\}}) dt \Big], \quad x \in \mathbb{R}.$$
(4)

Introduction to scale functions

 \triangleright The NPV (4) can be expressed in terms of the scale functions of the two spectrally negative Lévy processes X and Y.

 \triangleright We use $W^{(q)}$ and $W^{(q)}$ for the scale functions of X and Y, respectively.

 \triangleright These are mappings from \mathbb{R} to $[0,\infty)$ that take value zero on the negative half-line, while on the positive half-line they are strictly increasing functions that are defined by their Laplace transforms:

$$\int_{0}^{\infty} e^{-\theta x} W^{(q)}(x) dx = \frac{1}{\psi(\theta) - q}, \quad \theta > \Phi(q),$$

$$\int_{0}^{\infty} e^{-\theta x} \mathbb{W}^{(q)}(x) dx = \frac{1}{\psi(\theta) - \delta\theta - q}, \quad \theta > \varphi(q),$$
(5)

Continuation...

where

$$\Phi(q):=\sup\{\lambda\geq 0:\psi(\lambda)=q\}$$

and

$$\varphi(q) := \sup\{\lambda \ge 0 : \psi(\lambda) - \delta\lambda = q\}.$$

 \triangleright By the strict convexity of $\psi,$ we derive the strict inequality $\varphi(q) > \Phi(q) > 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Resolvent measure

$$R_b(x,B) := q^{-1} \mathbb{P}_x \{ U_{e_q}^b \in B \} = \mathbb{E}_x \Big[\int_0^\infty e^{-qt} \mathbf{1}_{\{U_t^b \in B\}} dt \Big], \quad B \in \mathcal{B}(\mathbb{R})$$

- -

admits a density

$$R_b(x, \mathrm{d}y) = (r_b^{(1)}(x, y) + r_b^{(2)}(x, y) \mathbf{1}_{\{x > b\}}) \mathrm{d}y, \quad y \in \mathbb{R}, \quad (6)$$

given in terms of the scale functions.

We can also write

$$v_b(x) = v_b^{(1)}(x) + v_b^{(2)}(x) \mathbf{1}_{\{x > b\}},$$
(7)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

First order condition

$$\frac{\partial}{\partial b}v_b(x) = u_b(x),\tag{8}$$

where

$$u_b(x) := \mathbb{E}_x \left[\int_0^\infty e^{-qt} h'(U_t^b) dt \right] - v'_b(x), \quad x \neq b.$$

<u>Note</u>: The first-order condition $\partial v_b(x)/\partial b|_{b=b^*} = 0$ is a necessary condition for the optimality of the refraction strategy π^{b^*} . Then, if such b^* exists,

$$v_{b^*}'(x) = \mathbb{E}_x\left[\int_0^\infty \mathrm{e}^{-qt} h'(U_t^{b^*}) \mathrm{d}t\right].$$

Preliminary results

Proposition

For all $x, b \in \mathbb{R}$ such that $x \neq b$,

$$u_b(x) = \left[\frac{\varphi(q) - \Phi(q)}{\delta \Phi(q)} e^{\Phi(q)(x-b)} + \mathbf{1}_{\{x>b\}} (M(x;b) - \mathbb{W}^{(q)}(x-b))\right]$$

I(b).

٠

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: For the case $h(y) := \alpha y^2$, $y \in \mathbb{R}$, for some $\alpha > 0$,

$$b^* = \beta q / (2\alpha) + \mathbb{E}(-\underline{X}_{e_q}) - \varphi(q)^{-1}$$

Continuation...

In this case,

$$I(b) = 2\alpha \frac{\varphi(q) - \Phi(q)}{\varphi(q)} \int_0^\infty (y+b) e^{-\varphi(q)y} dy + \delta \Big[2\alpha \int_{-\infty}^0 (y+b) \int_0^\infty e^{-\varphi(q)z} \Theta^{(q)}(z-y) dz dy - \beta \frac{\Phi(q)}{\varphi(q)} \Big].$$

Here,

$$\frac{\varphi(q) - \Phi(q)}{\varphi(q)} \int_0^\infty (y+b) \mathrm{e}^{-\varphi(q)y} \mathrm{d}y = \frac{\varphi(q) - \Phi(q)}{\varphi(q)} \Big(\frac{1}{\varphi(q)^2} + \frac{b}{\varphi(q)}\Big).$$

Another example

For the case

 $h(y) := \alpha y, \ y \in \mathbb{R},$

for some $\alpha \in \mathbb{R},$ we have $b^* = -\infty$ when

 $\alpha/q > \beta$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and $b^* = \infty$ otherwise.

Let Γ be the operator acting on sufficiently smooth functions f, defined by

$$\Gamma f(x) := \gamma f'(x) + \frac{\sigma^2}{2} f''(x) + \int_{(-\infty,0)} [f(x+z) - f(x) - f'(x)z\mathbf{1}_{\{-1 < z < 0\}}]\nu(\mathrm{d}z).$$

Lemma (Verification)

Suppose a strategy $\hat{\pi} \in \Pi_{\delta}$ is such that $v_{\hat{\pi}}$ is sufficiently smooth on \mathbb{R} and satisfies

$$\begin{cases} (\Gamma - q)v_{\hat{\pi}}(x) + h(x) \ge 0 & \text{if } v'_{\hat{\pi}}(x) \le \beta, \\ (\Gamma - q)v_{\hat{\pi}}(x) - \delta(v'_{\hat{\pi}}(x) - \beta) + h(x) \ge 0 & \text{if } v'_{\hat{\pi}}(x) > \beta. \end{cases}$$

$$(9)$$
Then $\hat{\pi}$ is an optimal strategy and $v(x) = v_{\hat{\pi}}(x)$ for all $x \in \mathbb{R}$.

Applying the previous result

 \triangleright It suffices to show that the function v_{b^*} is sufficiently smooth and satisfies (9).

 \triangleright The function v_{b^*} is sufficiently smooth.

▷ The inequalities (9) for $v_{\hat{\pi}} = v_{b^*}$ hold if and only if

$$\begin{cases} v'_{b^*}(x) \ge \beta & \text{if } x > b^*, \\ v'_{b^*}(x) \le \beta & \text{if } x \le b^*. \end{cases}$$
(10)

 \triangleright The function v_{b^*} is convex.

 \triangleright The function v_{b^*} satisfies (9).

Main result

Theorem

The strategy π^{b^*} is optimal and the value function is given by $v(x) = v_{b^*}(x)$ for all $x \in \mathbb{R}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Main result

Theorem

The strategy π^{b^*} is optimal and the value function is given by $v(x) = v_{b^*}(x)$ for all $x \in \mathbb{R}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Together with the analysis when $\delta \to \infty$.

Main result

Theorem

The strategy π^{b^*} is optimal and the value function is given by $v(x) = v_{b^*}(x)$ for all $x \in \mathbb{R}$.

Together with the analysis when $\delta \to \infty$. Recall that

$$\tilde{v}(x;\delta) := \inf_{\pi \in \Pi_{\delta}} \mathbb{E}_{x} \Big[\int_{0}^{\infty} e^{-qt} (h(Y_{t} + L_{t}^{\pi}) + \tilde{\beta}\ell_{t}^{\pi}) dt \Big]$$

$$= v(x;\delta, -\tilde{\beta}) + \frac{\tilde{\beta}\delta}{q},$$
(11)

where $v(x; \delta, -\tilde{\beta})$ is the value function (2) obtained previously with X_t replaced with $X_t^{(\delta)} := Y_t + \delta t$ and β with $-\tilde{\beta}$.

Limit problem

▷ Let Π_{∞} be the set of admissible strategies consisting of all right-continuous, nondecreasing and adapted processes L^{π} with $L_{0-}^{\pi} = 0$.

 \triangleright

$$\tilde{v}(x;\infty) := \inf_{\pi \in \Pi_{\infty}} \mathbb{E}_x \Big[\int_{[0,\infty)} e^{-qt} (h(Y_t + L_t^{\pi}) dt + \tilde{\beta} dL_t^{\pi}) \Big]$$

 \triangleright The infimum is attained by the reflected Lévy process $Y_t + L_t^{b^*(\infty)}$ with

$$L_t^{b^*(\infty)} := \sup_{0 \le t' \le t} ((b^*(\infty)) - Y_{t'}) \lor 0, \quad t \ge 0.$$

Continuation...

The lower boundary $b^*(\infty)$ is defined as the unique root of $I_\infty(b)=0$ where

$$I_{\infty}(b) := \int_{0}^{\infty} h'(y+b) \mathrm{e}^{-\varphi(q)y} \mathrm{d}y + \tilde{\beta} \frac{q}{\varphi(q)}, \quad b \in \mathbb{R}.$$
 (12)

Continuation...

The lower boundary $b^*(\infty)$ is defined as the unique root of $I_\infty(b)=0$ where

$$I_{\infty}(b) := \int_{0}^{\infty} h'(y+b) \mathrm{e}^{-\varphi(q)y} \mathrm{d}y + \tilde{\beta} \frac{q}{\varphi(q)}, \quad b \in \mathbb{R}.$$
 (12)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summarizing: We show the convergences of $b^*(\delta)$ to $b^*(\infty)$

and $\tilde{v}(x;\delta)$ to $\tilde{v}(x;\infty)$ as $\delta \uparrow \infty$.

Numerical results

We focus in the case $h(x) = x^2$, with q = .05 and for the size type distribution we approximate a Weibull random variable. Plots of $v_b(x)$ for the cases $\beta = 5$. Each panel shows $v_{b^*}(x)$ (solid) in comparison to $v_b(x)$ (dotted) for different values of β

Continuation...

Plots of convergence as $\delta \to \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Related work

- F. Avram, Z. Palmowski, and M. R. Pistorius. On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Probab. 2007.
- E. J. Baurdoux and K. Yamazaki. Optimality of doubly reflected Lévy processes in singular control. Stochastic Proc. Appl.,2015.
- A. E. Kyprianou and R. L. Loeffen. Refracted Lévy processes. Ann. Inst. H. Poincaré, 46(1):24,Äì44, 2010.
- D. Hernández-Hernández and K. Yamazaki. Games of singular control and stopping driven by spectrally one-sided Lévy processes. Stochastic Process. Appl. 2015.
- D. Hernández-Hernández, J.L. Pérez and K. Yamazaki. Optimality if refraction strategies for spectrally negative Lévy processes. SIAM J. Control Optim. 2016.

Thank you for your attention

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>