Optimality of refraction strategies for Lévy processes

Daniel Hernández-Hernández Research Center for Mathematics (CIMAT) Mexico

joint work with J.L. Pérez and K. Yamazaki

28 de marzo de 2016

KORK ERKER ADE YOUR

Outline

Introduction: Motivation and framework

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright Control problem
- \blacktriangleright First order conditions
- \blacktriangleright Limit results
- \blacktriangleright Singular control problem
- \blacktriangleright Numerical results

Motivation

Suppose that we have a Brownian motion W in one dimension, and we wish to control it, using controls l_t with values in the set $[0, \delta]$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Motivation

Suppose that we have a Brownian motion W in one dimension, and we wish to control it, using controls l_t with values in the set $[0, \delta]$.

The dynamics of the controlled process U are described as

$$
U_t = W_t + \int_0^t k(l_s)ds, \quad U_0 = x,
$$

KORK ERKER ADE YOUR

for some function k .

The controller has some objective in mind

continuation...

The controller has as objective to minimize the functional

$$
v(x, l.) = \mathbb{E}\left[\int_0^\infty e^{-qt}h(U_t, l_t)dt\right],
$$

for a given running cost function h .

continuation...

The controller has as objective to minimize the functional

$$
v(x, l.) = \mathbb{E}\left[\int_0^\infty e^{-qt}h(U_t, l_t)dt\right],
$$

for a given running cost function h .

It is well known that this problem is related with the HJB equation

$$
\frac{1}{2}v_{xx}(x) + \min_{l \in [0,\delta]} \{k(l)v_x(x) + h(x,l)\} - qv(x) = 0.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Verification...

If a smooth solution of the HJB equation can be found, we can propose as a candidate for optimal control

$$
l(x) = argmin_{l \in [0,\delta]} \{k(l)v_x(x) + h(x,l)\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Verification...

If a smooth solution of the HJB equation can be found, we can propose as a candidate for optimal control

$$
l(x) = argmin_{l \in [0,\delta]} \{k(l)v_x(x) + h(x,l)\}.
$$

 \triangleright Problem: Under which conditions on the data of this optimization problem is it possible to obtain a simple solution.

KORK ERKER ADE YOUR

 \blacktriangleright That is, on h, k δ ,....

Singular control

Suppose that we change now the dynamics for

$$
U_t = W_t + \int_{[0,t]} dl_s, \quad U_0 = x,
$$

where l_s is a nondecreasing, left continuous process with $l_0 = 0$, with an analogous structure in the cost function.

- \triangleright For this problem we have some how a "simple solution", finding a solution of a free boundary problem, and reflecting the process in the boundary.
- \triangleright Question: Is it possible to have something analogous for the above problem.

Controlling a Lévy processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space hosting a spectrally negative Lévy process $X = \{X_t; t \geq 0\}.$

The *Laplace exponent* of X is given by

$$
\psi(\theta) := \log \mathbb{E}[e^{\theta X_1}]
$$

= $\gamma \theta + \frac{\sigma^2}{2} \theta^2 + \int_{(-\infty,0)} (e^{\theta z} - 1 - \theta z \mathbf{1}_{\{z > -1\}}) \nu(\mathrm{d}z), \ \theta \ge 0.$

Here ν is a Lévy measure with support in $(-\infty, 0)$ and satisfying the integrability condition

$$
\int_{(-\infty,0)} (1 \wedge z^2) \nu(\mathrm{d}z) < \infty.
$$

KORK ERKER ADE YOUR

Remarks on X

- It has paths of bounded variation if and only if $\sigma = 0$ and $\int_{(-1,0)} |z| \, \nu(\mathrm{d}z) < \infty$
- \blacktriangleright In this case, we write the Laplace exponent as

$$
\psi(\theta) = \tilde{\gamma}\theta + \int_{(-\infty,0)} (\mathrm{e}^{\theta z} - 1)\nu(\mathrm{d}z), \quad \theta \ge 0,
$$

with $\tilde{\gamma} := \gamma - \int_{(-1,0)} z \, \nu(\mathrm{d} z).$

- \triangleright We exclude the case in which X is the negative of a subordinator (i.e., X has monotone paths a.s.). This assumption implies that $\tilde{\gamma} > 0$ when X is of bounded variation.
- ► Let $\mathbb{F} := \{ \mathcal{F}_t; t \geq 0 \}$ be the filtration generated by X.

Formulation of the control problem

Fix $\beta \in \mathbb{R}$, $\delta > 0$ and a measurable function $h : \mathbb{R} \to \mathbb{R}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Formulation of the control problem

Fix $\beta \in \mathbb{R}$, $\delta > 0$ and a measurable function $h : \mathbb{R} \to \mathbb{R}$.

Define Π_{δ} **as the set of absolutely continuous strategies** π given by adapted processes $L_t^\pi = \int_0^t \ell_s^\pi \mathrm{d}s, \, t \geq 0,$ with ℓ^π restricted to take values in $[0, \delta]$ uniformly in time.

KORK ERKER ADE YOUR

Formulation of the control problem

- Fix $\beta \in \mathbb{R}$, $\delta > 0$ and a measurable function $h : \mathbb{R} \to \mathbb{R}$.
- **Define** Π_{δ} **as the set of absolutely continuous strategies** π given by adapted processes $L_t^\pi = \int_0^t \ell_s^\pi \mathrm{d}s, \, t \geq 0,$ with ℓ^π restricted to take values in $[0, \delta]$ uniformly in time.
- For $q > 0$ fixed, the objective is to consider the net present value (NPV) of the expected total costs

$$
v_{\pi}(x) := \mathbb{E}_x \Big[\int_0^{\infty} e^{-qt} (h(U_t^{\pi}) + \beta \ell_t^{\pi}) dt \Big]. \tag{1}
$$

KORK ERKER ADE YOUR

Objectives

The state process is

$$
U_t^\pi:=X_t-L_t^\pi,\quad t\geq 0,
$$

and the objective is to compute the (optimal) value function

$$
v(x) := \inf_{\pi \in \Pi_{\delta}} v_{\pi}(x), \quad x \in \mathbb{R}, \tag{2}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

as well as the optimal strategy that attains it, if such a strategy exists.

Hypotheses

- 1. When X is of bounded variation, we assume that $\tilde{\gamma}-\delta>0.$
- 2. We assume that there exists $\bar{\theta} > 0$ such that $\int_{(-\infty,-1]} \exp(\bar{\theta}|z|) \nu(\mathrm{d}z) < \infty.$
- 3. We assume h is convex and has at most polynomial growth in the tail. That is to say, there exist $m, k > 0$ and $N\in\mathbb{N}$ such that $h(x)\leq k|x|^N$ for all $x\in\mathbb{R}$ such that $|x| > m$.

Remarks and equivalent problem

 \triangleright The drift-changed Lévy process

$$
Y_t := X_t - \delta t, \quad t \ge 0,
$$
\n(3)

KORK ERKER ADE YOUR

is the resulting controlled process if ℓ^{π} is uniformly set to be the maximal value δ , and is again a spectrally negative Lévy process.

 \triangleright The cost function v_{π} as in [\(1\)](#page-11-0) is well-defined and finite for all $\pi \in \Pi_{\delta}$.

Remarks and equivalent problem

 \triangleright The drift-changed Lévy process

$$
Y_t := X_t - \delta t, \quad t \ge 0,
$$
\n⁽³⁾

is the resulting controlled process if ℓ^{π} is uniformly set to be the maximal value δ , and is again a spectrally negative Lévy process.

- \triangleright The cost function v_{π} as in [\(1\)](#page-11-0) is well-defined and finite for all $\pi \in \Pi_{\delta}$.
- \triangleright We can also consider a version of this problem where a linear drift is added to the increments of X (as opposed to be subtracted): one wants to minimize, for some $\beta \in \mathbb{R}$, the NPV

$$
\tilde{v}_\pi(x) := \mathbb{E}_x \Big[\int_0^\infty e^{-qt} (h(X_t + L_t^\pi) + \tilde{\beta} \ell_t^\pi) dt \Big].
$$

Continuation...

 \triangleright Claim: This problem is equivalent to the problem described above.

- \bullet We use Y as in [\(3\)](#page-16-0) and set $\tilde{L}^\pi_t := \delta t L^\pi_t$
- Then, we can write

$$
\tilde{v}_{\pi}(x) = \mathbb{E}_{x} \Big[\int_{0}^{\infty} e^{-qt} (h(Y_{t} - \tilde{L}_{t}^{\pi}) - \tilde{\beta} \tilde{\ell}_{t}^{\pi}) dt \Big] + \frac{\tilde{\beta} \delta}{q}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Hence it is equivalent to solving our problem for $\beta := -\tilde{\beta}$

Problems in mind

- \blacktriangleright X_t may represent the inventory level of some company.
- \triangleright The objective of the company can be to maintain the inventory level around some target \hat{x} .
- \blacktriangleright The running cost function h can be used to penalized the distance between X_t and \hat{x} .
- \triangleright The inventory can be on commodity products, such as oil, coal, water, etc.
- Inventory of shares in a particular company held by a specialist who is responsible for trading in that company's shares. An impact of selling in the asset's price can also be included.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Refraction strategies

Say $\pi^b \in \Pi_{\delta}$, under which the controlled process becomes the refracted Lévy process $U^b = \{U_t^b; t \geq 0\}$, with a suitable choice of the refraction boundary $b \in \mathbb{R}$. This is a strong Markov process given by the unique strong solution to the SDE

$$
dU_t^b = dX_t - \delta \mathbf{1}_{\{U_t^b > b\}} dt, \quad t \ge 0.
$$

 $\triangleright U^b$ progresses like X below the boundary b while it does like Y above h .

 \triangleright the total costs associated to π^b is

$$
v_b(x) := \mathbb{E}_x \Big[\int_0^\infty e^{-qt} (h(U_t^b) + \beta \delta \mathbf{1}_{\{U_t^b > b\}}) dt \Big], \quad x \in \mathbb{R}.
$$
 (4)

KORKAR KERKER EL VOLO

Introduction to scale functions

 \triangleright The NPV [\(4\)](#page-20-0) can be expressed in terms of the scale functions of the two spectrally negative Lévy processes X and Y_{-}

 \triangleright We use $W^{(q)}$ and $\mathbb{W}^{(q)}$ for the scale functions of X and Y , respectively.

 \triangleright These are mappings from ℝ to $[0,\infty)$ that take value zero on the negative half-line, while on the positive half-line they are strictly increasing functions that are defined by their Laplace transforms:

$$
\int_0^\infty e^{-\theta x} W^{(q)}(x) dx = \frac{1}{\psi(\theta) - q}, \quad \theta > \Phi(q),
$$

$$
\int_0^\infty e^{-\theta x} W^{(q)}(x) dx = \frac{1}{\psi(\theta) - \delta \theta - q}, \quad \theta > \varphi(q),
$$
 (5)

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Continuation...

where

$$
\Phi(q):=\sup\{\lambda\geq 0: \psi(\lambda)=q\}
$$

and

$$
\varphi(q) := \sup \{ \lambda \ge 0 : \psi(\lambda) - \delta \lambda = q \}.
$$

 \triangleright By the strict convexity of ψ , we derive the strict inequality $\varphi(q) > \Phi(q) > 0.$

Resolvent measure

$$
R_b(x, B) := q^{-1} \mathbb{P}_x \{ U_{\mathbf{e}_q}^b \in B \} = \mathbb{E}_x \Big[\int_0^\infty e^{-qt} \mathbf{1}_{\{ U_t^b \in B \}} dt \Big], \ \ B \in \mathcal{B}(\mathbb{R})
$$

admits a density

$$
R_b(x,dy) = (r_b^{(1)}(x,y) + r_b^{(2)}(x,y)1_{\{x>b\}})dy, \quad y \in \mathbb{R}, \quad (6)
$$

given in terms of the scale functions.

We can also write

$$
v_b(x) = v_b^{(1)}(x) + v_b^{(2)}(x) \mathbf{1}_{\{x > b\}},\tag{7}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

First order condition

$$
\frac{\partial}{\partial b}v_b(x) = u_b(x),\tag{8}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

where

$$
u_b(x) := \mathbb{E}_x \Big[\int_0^\infty e^{-qt} h'(U_t^b) dt \Big] - v'_b(x), \quad x \neq b.
$$

<u>Note</u>: The first-order condition $\partial v_b(x)/\partial b|_{b=b^*}=0$ is a necessary condition for the optimality of the refraction strategy $\pi^{b^*}.$ Then, if such b^* exists,

$$
v'_{b^*}(x) = \mathbb{E}_x \left[\int_0^\infty e^{-qt} h'(U_t^{b^*}) dt \right].
$$

Preliminary results

Proposition

For all $x, b \in \mathbb{R}$ such that $x \neq b$,

$$
u_b(x) = \left[\frac{\varphi(q) - \Phi(q)}{\delta \Phi(q)} e^{\Phi(q)(x-b)} + \mathbf{1}_{\{x > b\}} (M(x;b) - W^{(q)}(x-b))\right]
$$

I(b).

·

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Example: For the case $h(y) := \alpha y^2$, $y \in \mathbb{R}$, for some $\alpha > 0$,

$$
b^* = \beta q/(2\alpha) + \mathbb{E}(-\underline{X}_{e_q}) - \varphi(q)^{-1}.
$$

Continuation...

In this case,

$$
I(b) = 2\alpha \frac{\varphi(q) - \Phi(q)}{\varphi(q)} \int_0^\infty (y + b) e^{-\varphi(q)y} dy +
$$

$$
\delta \left[2\alpha \int_{-\infty}^0 (y + b) \int_0^\infty e^{-\varphi(q)z} \Theta^{(q)}(z - y) dz dy - \beta \frac{\Phi(q)}{\varphi(q)} \right].
$$

Here,

$$
\frac{\varphi(q)-\Phi(q)}{\varphi(q)}\int_0^\infty (y+b){\rm e}^{-\varphi(q)y}{\rm d}y=\frac{\varphi(q)-\Phi(q)}{\varphi(q)}\Big(\frac{1}{\varphi(q)^2}+\frac{b}{\varphi(q)}\Big).
$$

K ロ X K 메 X K B X X B X X D X O Q Q O

Another example

For the case

 $h(y) := \alpha y, \ \ y \in \mathbb{R},$

for some $\alpha \in \mathbb{R}$, we have $b^* = -\infty$ when

 $\alpha/q > \beta$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

and $b^* = \infty$ otherwise.

Let Γ be the operator acting on sufficiently smooth functions f , defined by

$$
\Gamma f(x) := \gamma f'(x) + \frac{\sigma^2}{2} f''(x) +
$$

$$
\int_{(-\infty,0)} [f(x+z) - f(x) - f'(x)z\mathbf{1}_{\{-1 < z < 0\}}] \nu(\mathrm{d}z).
$$

Lemma (Verification)

Suppose a strategy $\hat{\pi} \in \Pi_{\delta}$ is such that $v_{\hat{\pi}}$ is sufficiently smooth on $\mathbb R$ and satisfies

$$
\begin{cases}\n(\Gamma - q)v_{\hat{\pi}}(x) + h(x) \ge 0 & \text{if } v'_{\hat{\pi}}(x) \le \beta, \\
(\Gamma - q)v_{\hat{\pi}}(x) - \delta(v'_{\hat{\pi}}(x) - \beta) + h(x) \ge 0 & \text{if } v'_{\hat{\pi}}(x) > \beta.\n\end{cases}
$$
\nThen $\hat{\pi}$ is an optimal strategy and $v(x) = v_{\hat{\pi}}(x)$ for all $x \in \mathbb{R}$.

Applying the previous result

 \triangleright It suffices to show that the function v_{b^*} is sufficiently smooth and satisfies [\(9\)](#page-28-1).

 \triangleright The function v_{b^*} is sufficiently smooth.

 \triangleright The inequalities [\(9\)](#page-28-1) for $v_{\hat{\pi}} = v_{b^*}$ hold if and only if

$$
\begin{cases} v'_{b^*}(x) \geq \beta & \text{if } x > b^*, \\ v'_{b^*}(x) \leq \beta & \text{if } x \leq b^*. \end{cases}
$$
 (10)

KORK ERKER ADE YOUR

 \triangleright The function v_{b^*} is convex.

 \triangleright The function v_{b^*} satisfies [\(9\)](#page-28-1).

Main result

Theorem

The strategy π^{b^*} is optimal and the value function is given by $v(x) = v_{b^*}(x)$ for all $x \in \mathbb{R}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Main result

Theorem

The strategy π^{b^*} is optimal and the value function is given by $v(x) = v_{b^*}(x)$ for all $x \in \mathbb{R}$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Together with the analysis when $\delta \to \infty$.

Main result

Theorem

The strategy π^{b^*} is optimal and the value function is given by $v(x) = v_{b^*}(x)$ for all $x \in \mathbb{R}$.

Together with the analysis when $\delta \to \infty$. Recall that

$$
\tilde{v}(x;\delta) := \inf_{\pi \in \Pi_{\delta}} \mathbb{E}_x \Big[\int_0^\infty e^{-qt} (h(Y_t + L_t^\pi) + \tilde{\beta} \ell_t^\pi) dt \Big] \n= v(x;\delta, -\tilde{\beta}) + \frac{\tilde{\beta}\delta}{q},
$$
\n(11)

where $v(x; \delta, -\tilde{\beta})$ is the value function [\(2\)](#page-14-0) obtained previously with X_t replaced with $X_t^{(\delta)}$ $t^{(\delta)}_{t} := Y_t + \delta t$ and β with $-\tilde{\beta}$.

KORK (FRAGE) EL POLO

Limit problem

 \triangleright Let Π_{∞} be the set of admissible strategies consisting of all right-continuous, nondecreasing and adapted processes L^π with $L_{0-}^{\pi} = 0$.

 \triangleright

$$
\tilde{v}(x;\infty) := \inf_{\pi \in \Pi_{\infty}} \mathbb{E}_x \Big[\int_{[0,\infty)} e^{-qt} (h(Y_t + L_t^{\pi}) dt + \tilde{\beta} dL_t^{\pi}) \Big]
$$

 \triangleright The infimum is attained by the reflected Lévy process $Y_t + L_t^{b^*(\infty)}$ with

$$
L_t^{b^*(\infty)} := \sup_{0 \le t' \le t} ((b^*(\infty)) - Y_{t'}) \vee 0, \quad t \ge 0.
$$

KORK ERKER ADE YOUR

Continuation...

The lower boundary $b^*(\infty)$ is defined as the unique root of $I_{\infty}(b) = 0$ where

$$
I_{\infty}(b) := \int_0^{\infty} h'(y+b) e^{-\varphi(q)y} dy + \tilde{\beta} \frac{q}{\varphi(q)}, \quad b \in \mathbb{R}.
$$
 (12)

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

Continuation...

The lower boundary $b^*(\infty)$ is defined as the unique root of $I_{\infty}(b) = 0$ where

$$
I_{\infty}(b) := \int_0^{\infty} h'(y+b) e^{-\varphi(q)y} dy + \tilde{\beta} \frac{q}{\varphi(q)}, \quad b \in \mathbb{R}.
$$
 (12)

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Summarizing: We show the convergences of $b^*(\delta)$ to $b^*(\infty)$

and $\tilde{v}(x; \delta)$ to $\tilde{v}(x; \infty)$ as $\delta \uparrow \infty$.

Numerical results

We focus in the case $h(x)=x^2$, with $q=\mathit.05$ and for the size type distribution we approximate a Weibull random variable. Plots of $v_b(x)$ for the cases $\beta=5.$ Each panel shows $v_{b^*}(x)$ (solid) in comparison to $v_b(x)$ (dotted) for different values of β

 2990

Continuation...

Plots of convergence as $\delta \to \infty$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Related work

- \blacktriangleright F. Avram, Z. Palmowski, and M. R. Pistorius. On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Probab. 2007.
- \blacktriangleright E. J. Baurdoux and K. Yamazaki. Optimality of doubly reflected Lévy processes in singular control. Stochastic Proc. Appl.,2015.
- \triangleright A. E. Kyprianou and R. L. Loeffen. Refracted Lévy processes. Ann. Inst. H. Poincaré, 46(1):24, Äì44, 2010.
- ► D. Hernández-Hernández and K. Yamazaki. Games of singular control and stopping driven by spectrally one-sided Lévy processes. Stochastic Process. Appl. 2015.
- ▶ D. Hernández-Hernández, J.L. Pérez and K. Yamazaki. Optimality if refraction strategies for spectrally negative Lévy processes. SIAM J. Control Optim. 2016.

Thank you for your attention

K ロ X K 메 X K B X X B X X D X O Q Q O