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Probability metrics approaches for scenario generation

Deterministic methods for scenario generation

So far we have discussed (mostly) approaches based on random sampling
to generate scenarios for the problem minx∈X E[G (x , ξ)].

We can do a lot with that (convergence results, confidence intervals, etc.).

BUT: This may not always be the best choice! Some possible reasons:

Random sampling does not use any information about the problem, it
only uses information about the distribution of ξ.

Suppose the objective function is a risk function instead of the
expectation. Then, it is quite possible that only the ξ’s in some
region actually ‘matter”.

In the case of multi-stage problems, we cannot simply do SAA by
drawing sample paths from the underlying stochastic process.
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Probability metrics approaches for scenario generation Stability results

A stability-based approach

IDEA: Let P denote the distribution of ξ, which takes values in Ξ. Define
the function

v(P) := min
x∈X

EP [G (x , ξ)].

and, for ρ > 0, define the set X ρ := X ∩ ρB.

Let dG ,ρ(P,Q) denote the distance between two distributions P and Q,
defined as

dG ,ρ(P,Q) := sup
x∈Xρ

∣∣EP [G (x , ξ)]− EQ [G (x , ξ̃)]
∣∣

where ξ̃ ∼ Q.

Then, it is possible to show that there exist constants ρ > 0 and ε > 0
such that

|v(P)− v(Q)| ≤ dG ,ρ(P,Q) whenever dG ,ρ(P,Q) < ε.

Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 13 3 / 60



Probability metrics approaches for scenario generation Stability results

Why is this useful?

Let P be the original distribution and Q be a discretization. So, if we can
choose Q to approximate P well (in terms of dG ,ρ(P,Q)), then the
optimal values will be automatically close!

How to do that?

Computing dG ,ρ(P,Q) seems even harder than the original problem!

Alternatively, if we can find a more easily computable distance d such
that dG ,ρ(P,Q) ≤ d(P,Q), then all we need is to find Q that makes
d(P,Q) small.
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Probability metrics approaches for scenario generation Stability results

A class of distances

A very large class of distances between probability measures has the form

dH(P,Q) := sup
h∈H

∣∣ ∫
Ξ
h(s)P(ds)−

∫
Ξ
h(s)Q(ds)

∣∣,
where H is a family of integrable functions with certain properties.
Examples:

HB = {bounded measurable functions}, which yields

dHB
(P,Q) = sup{|P(A)− Q(A)| : A is a measurable set.}

This is called the variational distance between P and Q.

HBL = {bounded Lipschitz functions with Lipschitz constant 1}, i.e.,
|h(s)− h(t)| ≤ ‖s − t‖ for all s, t.
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Probability metrics approaches for scenario generation Stability results

A class of distances

Some further important examples:

HL = {Lipschitz functions with Lipschitz constant 1}. This is called
the Kantorovich distance. On the real line, the corresponding distance
can be written as

dK (P,Q) =

∫
R

∣∣FP(z)− FQ(z)
∣∣ dz =

∫ 1

0

∣∣F−1
P (u)− F−1

Q (u)
∣∣ du

where FP(z) = P((−∞, z ]) = P(ξ ≤ z).

HLq = {Lipschitz functions of order q with Lipschitz constant 1}, i,e.

|h(s)− h(t)| ≤ ‖s − t‖ max{1, ‖s‖q−1, ‖t‖q−1} for all s, t.

This is called the Fortet-Mourier distance.
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Probability metrics approaches for scenario generation Stability results

A useful metric d

Consider now the set Hc defined as

Hc :=
{
h :

∣∣h(s)− h(t)
∣∣ ≤ c(s, t) ∀ s, t ∈ Ξ

}
which yields

dc(P,Q) := sup
h∈Hc

∣∣EP [h(ξ)]− EQ [h(ξ̃)]
∣∣,

where c(s, t) is a function measuring the ”distance” between two scenarios
s and t in Ξ. One example of requirements on c is that it must satisfy

c(s, t) = 0 if s = t;

c(s, t) = c(t, s);

lim‖s−t‖→0 c(s, t) = 0;

c(s, t) ≤ λ(s) + λ(t) for some function λ which is bounded on
bounded sets.
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Probability metrics approaches for scenario generation Stability results

A useful metric d

Suppose that the objective function G (x , ·) has the property that

|G (x , s)− G (x , t)| ≤ ϕ(‖x‖) c(s, t) ∀x ∈ X ,

where ϕ : R+ 7→ R+ \ {0} is a non-decreasing function. Then

(ϕ(ρ))−1dG ,ρ(P,Q) = (ϕ(ρ))−1 sup
x∈Xρ

∣∣EP [G (x , ξ)]− EQ [G (x , ξ̃)]
∣∣

≤ sup
h∈Hc

∣∣EP [h(ξ)]− EQ [h(ξ̃)]
∣∣

= dc(P,Q),

i.e.,
dG ,ρ(P,Q) ≤ ϕ(ρ) dc(P,Q).

So what?? Calculating dc still seems pretty hard...
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Probability metrics approaches for scenario generation The Monge-Kantorovich problem

A transportation problem

Gaspard Monge proposed in 1781 the following problem:

How to transport soil from site S to site S ′ with minimum cost,
if there is a cost c(s, s ′) of transporting a grain of sand from
position s ∈ S to position s ′ ∈ S ′?

We can state the problem in more mathematical terms as follows: let µ be
a finite measure on S and ν be a finite measure on S ′ such that
µ(S) = ν(S ′) (=1 without loss of generality).

Monge wanted to find a mapping T : S 7→ S ′ such that

ν(B) = µ(T−1(B)) for any measurable set B (i.e. T preserves
volumes);

T minimizes the total cost∫
S
c(s,T (s))µ(ds).
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Probability metrics approaches for scenario generation The Monge-Kantorovich problem

A transportation problem

As posed, this is a very difficult problem, which eluded mathematicians for
more than 150 years! Why?

It is hard even to show existence of T

The optimization problem in nonlinear in T and the feasibility set is
non-convex...
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Probability metrics approaches for scenario generation The Monge-Kantorovich problem

The breakthrough

In 1942 L. Kantorovich proposed a solution for a related problem, unaware
of Monge’s work.

In terms of Monge’s problem, Kantorovich’s solution can be viewed as a
relaxation of the requirement that T be a function (= indivisible grains).

In Kantorovich’s formulation, the transportation map T is replaced by
a the wider class of transportation plans, which move masses instead
of single points.

The transportation plans are identified with the set of probability
measures π on the product space X × Y .

Clearly we must have

π(A,Y ) = µ(A) for any measurable set A ⊆ S

π(X ,B) = ν(B) for any measurable set B ⊆ S ′
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Probability metrics approaches for scenario generation The Monge-Kantorovich problem

The Monge-Kantorovich problem

In other words, Kantorovich’s problem can be formulated as

inf
π

{∫
S×S ′

c(s, t)π(ds, dt) : π has marginals µ and ν

}
.

Note that this is a linear optimization problem over a convex set (the
set of all probability measures on S × S ′).

It has a lot more structure — duality, algorithms, etc.

This is called the Monge-Kantorovich transportation problem in the
literature.
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Probability metrics approaches for scenario generation The Monge-Kantorovich problem

The M-K problem: the finite case

Consider the particular setting where

S has finitely many points S = {s1 . . . , sn}, so µ corresponds to
probabilities µ1 . . . , µn;

S ′ has finitely many points S ′ = {t1 . . . , tm} so ν corresponds to
probabilities ν1 . . . , νm.

Then, the M-K problem can be written as the finite dimensional LP

min
π∈Rn×m

n∑
i=1

m∑
j=1

c(si , tj)πij

m∑
j=1

πij = µi i = 1, . . . , n

n∑
i=1

πij = νj j = 1, . . . ,m

πij ≥ 0
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Probability metrics approaches for scenario generation The Monge-Kantorovich problem

The Kantorovich-Rubinstein problem

Consider now the situation where S = S ′. Then, we can write the M-K
problem as

inf
π

∫
S×S

c(s, t)π(ds, dt)

s. to π(A, S)− π(S ,A) = σ(A) for any measurable set A ⊆ S ,

π ≥ 0

where σ = µ− ν.

This is called the Kantorovich-Rubinstein problem in the literature.
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Probability metrics approaches for scenario generation The Monge-Kantorovich problem

A key duality result

By deriving the dual of the K-R problem we obtain the problem

sup
h

∫
S
h(s)σ(ds)

s. to |h(s)− h(t)| ≤ c(s, t) ∀s, t ∈ S .

Have we encountered this problem before?...

YES! It is precisely the Kantorovich distance between distributions P and
Q (with respect to scenario distance function c), defined as

dc(P,Q) = sup
h

{∣∣EP [h(ξ)]− EQ [h(ξ̃)]
∣∣ :

|h(s)− h(t)| ≤ c(s, t) ∀ s, t ∈ Ξ
}
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Probability metrics approaches for scenario generation Probability distances via M-K

Consequences of the duality result

Let dMK(P,Q) be the distance between two distributions P and Q, given
by the optimal value of the M-K problem.

Then, by weak duality we have dc(P,Q) ≤ dMK(P,Q).

The key question: When is there no duality gap?

Conditions on c and/or Ξ must be imposed.

One such condition is that
(i) Ξ is a compact space
(ii) c is either continuous on Ξ×Ξ, or it is lower semi-continuous and
satisfies the triangle inequality.
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Probability metrics approaches for scenario generation Probability distances via M-K

Comments

In the particular case

c(ξ1, ξ2) = ‖ξ1 − ξ2‖ηm

dc is called the Wasserstein distance between P and Q of order η
with respect to the m-norm.

Consider the case where Ξ = {ξ1, . . . , ξr}. Typically P is known, with
support supp(P) ⊆ Ξ, and we want to find Q that contains fewer
scenarios than P and approximates it as closely as possible.

Let {z1, . . . , zn} and {y1, . . . , ym} denote the support of P and Q
respectively.
So, we want to solve the M-K problem with variables {πij} and
y1, . . . , ym.
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Probability metrics approaches for scenario generation Probability distances via M-K

The M-K problem

Suppose we fix the support of the approximating distribution Q (i.e., the
y1, . . . , ym).

Then, the M-K problem is a simple LP, which can actually be solved
analytically:

For each j = 1, . . . ,m, let Aj denote the set of indices of the zi ’s that
are closer (in terms of the distance measured by c) to yj than to any
other yk .

Let

π∗ij :=

{
pi if i ∈ Aj

0 otherwise

and let q∗j :=
∑

i πij .
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Probability metrics approaches for scenario generation Probability distances via M-K

The M-K problem (cont.)

In general, of course, we don’t know the yj ’s. Let us restrict supp(Q) to
be a subset of supp(P). This is called the scenario reduction problem.

In that case, the resulting problem is combinatorial. Possible approaches
are:

When |supp(Q)| = 1 or |supp(Q)| = |supp(P)| − 1, the problem is
easy to solve.

Then, we can either start with an empty set and add once scenario at a
time (a forward heuristic) until we reach |supp(Q)| = m,

Or we can start with n = |supp(P)| scenarios and eliminate one at a
time until we reach |supp(Q)| = m (a backward heuristic).
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Probability metrics approaches for scenario generation Probability distances via M-K

The facility location problem

Another possibility is to treat the problem as a facility location problem.

However, the problem is still difficult since it involves discrete variables
(for the locations) and continuous variables (for the probabilities).

Moreover, this is a k-dimensional facility location problem, where m is
the dimension of the random vector corresponding to the scenarios

Dempster et al. (2011) propose an iterative scheme that solves
alternately for the ys and the πs.

Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 13 20 / 60



Probability metrics approaches for scenario generation Probability distances via M-K

The facility location problem (cont.)

Pflug and Pichler (2015) study the following approach: suppose that
Ξ ⊂ Rk , and let Y = (y1, . . . , ym) denote an array of m points in Rk ,
which are candidates to constitute supp(Q).

Given a scenario ξ ∈ Ξ, define d(ξ,Y ) as the distance between ξ and
the element of the set {y1, . . . , ym} which is the closest to ξ.

Then, define the function

D(Y ) := E[d(ξ,Y )].

We would like to find the Y that minimizes D.

It is possible to show that when ξ has continuous distributions the
function D(Y ) is differentiable, so first-order algorithms can be used
to find a stationary point of D.
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Stochastic Dynamic Problems Formulation

Stochastic dynamic problems

Many problems are dynamic and stochastic by nature. For example,

Hydroelectric energy planning: How much energy to produce/store in
each month, given that water inflows are uncertain?

Portfolio selection: How much money should I put on each
investment every month, knowing that future returns are uncertain?

Revenue management: Which products (e.g., fare classes) should be
made available at each time period, given that future demand is
uncertain?

Issue: How to generate scenarios for such problems?
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Stochastic Dynamic Problems Formulation

Dynamics (two stages)

 
Make 

decision 
 

Make 
decision 

Observe 
uncertainty 

𝑥1 𝜉2 𝑥2 
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Stochastic Dynamic Problems Formulation

Dynamics (T stages)
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Stochastic Dynamic Problems Formulation

Multi-stage models

min
x1,...,xT

E [f1(x1, ξ1) + . . .+ fT (xT , ξT )]

s.t. xt ∈ Xt (x1, . . . , xt−1, ξ1, . . . , ξt) , t = 1, . . . ,T [MSSP]

xt C σ(ξ1, . . . , ξt)

where

x1, . . . , xT are the decisions made at each stage;

ξt , t = 1, . . . ,T is the uncertainty observed just before stage t (ξ1 is
a constant), with ξt ∈ Ξt .

ft(xt , ξt) is the cost of decision xt given the observed uncertainty at
that stage;

Xt denotes the feasibility set in stage t, which may depend on
previous decisions as well as on the observed uncertainty.
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Stochastic Dynamic Problems Formulation

Recursive formulation of linear MSSPs

min cT1 x1 + Eξ2 [Q2(x1, ξ2)]

subject to A1x1 ≤ b1. [MSSP-R]

The function Q2 is defined recursively as

Qt(x1, . . . , xt−1, ξ2, . . . , ξt) =

min
xt

cTt xt + Eξt+1 [Qt+1(x1, . . . , xt , ξ2, . . . , ξt+1) | ξ2, . . . , ξt ]

subject to Atxt ≤ bt −
t−1∑
m=1

Bm+1xm,

t = 2, . . . ,T . In the above formulation, ξt denotes the random
components of ct ,At ,Bt , bt . Also, QT+1 ≡ 0.
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Stochastic Dynamic Problems Sampling approaches

What is different about the multi-stage case?

Can we apply the same ideas seen earlier? (e.g., Monte Carlo, facility
location approaches).

Yes...and no! The point is that it must be done carefully.

Roughly speaking, the scenario generation technique must somehow
incorporate the dependence structure of the input process (trees).
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Stochastic Dynamic Problems Sampling approaches

Example: SAA approach

Suppose we look at formulation [MSSP] and apply the SAA approach to it.

That is, we take N samples of the process {ξ2, . . . , ξT} (call them

{ξj2, . . . , ξ
j
T}, j = 1, . . . ,N) and approximate the expectation with the

sample average.

Does that work? Let us consider for simplicity the case T = 3. Then,
the actual function Q2 is

Q2(x1, ξ
j
2) = min

x2

(c j2)T x2 + Eξ3

[
Q3(x1, x2, ξ2, ξ3) | ξ2 = ξj2

]
subject to Aj

2x2 ≤ bj2 − B j
2x1,

but we are calculating

Q̂2(x1, ξ
j
2) = min

x2

(c j2)T x2 + Q3(x1, x2, ξ
j
2, ξ

j
3)

subject to Aj
2x2 ≤ bj2 − B j

2x1,
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Stochastic Dynamic Problems Sampling approaches

Example: SAA approach

So, we see that we are estimating the expectation

Eξ3

[
Q3(x1, x2, ξ2, ξ3) | ξ2 = ξj2

]
with a sample of size one

Q3(x1, x2, ξ
j
2, ξ

j
3)

There is no way we can obtain consistent estimators as N →∞!

The situation can be fixed if we use conditional sampling:

That is, for each value of ξj2 we generate N samples ξj13 , . . . , ξ
jN
3 .

Of course, this implies drawing N2 samples overall!

For a T -stage problem, this implies drawing NT−1 samples.
Impractical! We need to work with a fixed tree structure.
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Stochastic Dynamic Problems Sampling approaches

Example: processes generated by time series

Suppose that the underlying stochastic process ξ := (ξ1, . . . , ξT ) is driven
by a time series model of the form

ξt+1 = ψ(ξ0, . . . , ξt ,Ut), (1)

where U0, . . . ,UT−1 are independent uniform random vectors in (0, 1)k ,
and ξ0 is a constant.

1 Let nt denote the number of branches to be generated at each node
in stage t;

2 For each t = 0, . . . ,T − 1:
1 Generate nt Uniform(0,1) k-dimensional random vectors U1

t , . . . ,U
nt
t

using MC or QMC method;
2 For each node in stage t, generate nt children nodes using the relation

(1) for each U j
t , j = 1, . . . , nt .
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Stochastic Dynamic Problems Tree processes

Measuring distances in trees

Consider the input process {ξt} of the MSSP, and let P be its
”distribution”.

As before, we would like to find another distribution Q that approximates
P and and has fewer scenarios than P.

A more basic issue: What is the distribution of {ξt}?

The distribution of the stochastic process (ξ1, . . . , ξT ) is given by the
joint distribution

P(ξ1 ∈ A1, . . . , ξT ∈ AT ) for any measurable sets A1, . . . ,AT ⊆ Ξ1×. . .×ΞT .

Does that suffice?
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Stochastic Dynamic Problems Tree processes

An example

Consider the following 4-stage example, from Pflug (2009):

The processes on the left and on the right have the same distribution —
but they clearly have different tree structures!
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Stochastic Dynamic Problems Tree processes

An example (cont.)

To see why this matters, consider the problem

min
x1,x2,x3

E [|x1 − ξ4|+ |x2 − ξ4|+ |x3 − ξ4|]

s.t. xt C σ(ξ1, . . . , ξt), t = 1, 2, 3.

What is the optimal solution for the processes in the previous slide?

For the one on the left, an optimal solution is xt = 1 on the upper
side of the tree, xt = 0 on the lower side.This yields an optimal value
equal to 1.

For the one on the right, any feasible solution is optimal, and
corresponds to an objective value equal to 1.5.

So, we need to define a distribution that can take the tree structure
into account.
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Stochastic Dynamic Problems Tree processes

Nested distributions

Pflug (2009) define the notion of nested processes, in which the element
at time t has two components: the random vector ξt , and the process that
is conditional on each outcome of ξt .

The figure below illustrates the nested process for the tree on the left of
the previous figure.

It is possible then to define distributions of the nested processes, which are
called nested distributions.
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Stochastic Dynamic Problems Probability distances in the dynamic case

Nested distances

Working with nested distributions essentially means that we need not only
the distribution of the stochastic process but also the conditional
distributions.

We can then define a nested Kantorovich distance between two (nested)
processes, which extends the M-K problem for conditional distributions.

Still, how to select the scenarios?...
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Stochastic Dynamic Problems Probability distances in the dynamic case

An easier case

Mirkov and Pflug (2007) define conditional Wasserstein distances between
the conditional distributions Pt(· | ξ1, . . . , ξt−1) and Qt(· | ξ1, . . . , ξt−1).

If a particular path ξ1, . . . , ξt−1 does not exist in the Q-tree, the
distance is zero (assuming the Q-tree is a subset of the P-tree).

Otherwise, the distance is the Wasserstein distance dW for the
respective conditional distributions.

They also argue that the Wasserstein distance provide good coverage
of the tails of a distribution.
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Stochastic Dynamic Problems Probability distances in the dynamic case

An easier case (cont.)

They show that, if

dW (P1,Q1) < ε1

sup
ξ1

dW (P2(· | ξ1), Q2(· | ξ1)) < ε2

sup
ξ1,ξ2

dW (P3(· | ξ1, ξ2), Q3(· | ξ1, ξ2)) < ε2

...

sup
ξ1,ξT−1

dW (PT (· | ξ1, . . . , ξT−1), QT (· | ξ1, . . . , ξT−1)) < εT

for (ε1, . . . , εT ) small enough, then the solutions of the problems obtained
with P and Q trees are close.

It is also possible to show that, under proper assumptions, the above
conditions imply that the corresponding nested distributions are close.
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Stochastic Dynamic Problems Algorithms

Scenario tree generation algorithm of Pflug and Pichler
(2015)

For each stage t = 1, . . . ,T − 1,

1 Fix a small number mt of scenarios to be generated for each node in
that stage;

2 For each node,

1 Solve the k-dimensional facility location problem plus the M-K LP to
find a conditional distribution Qt with nt points that approximates well
the conditional distribution Pt at that node.

Alternatively, one can fix {εt} and find the number of nodes mt in each
stage needed to achieve that precision.

Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 13 38 / 60



Stochastic Dynamic Problems Algorithms

Scenario reduction methods

One alternative often used in practice is to start with a large
representation of the process (e.g., obtained from sampling) and then
apply a scenario reduction technique such as Heitsch and Römisch (2009):

The idea is to find, for each stage, the set of nodes that better
represent the conditional distributions.

This can be done by solving a combinatorial problem, or by applying
the forward/backward heuristics.

The other nodes in that stage are then “merged” into the closest
representative node.

The algorithm can be applied when we don’t have direct access to the
distributions, only to sample paths available from data.
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Stochastic Dynamic Problems Algorithms

An example

Consider the following 4-stage example with forward construction, from
Heitsch and Römisch (2009):
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Stochastic Dynamic Problems Algorithms

An example

Consider the following 4-stage example with backward construction, from
Heitsch and Römisch (2009):
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Stochastic Dynamic Problems Algorithms

The independent case

The situation is considerably simplified when the process ξt is stage-wise
independent.

Although this seems a restrictive assumption, in many situations one
can do a “modeling trick” to obtain such a property (see example
below).

The advantage is that in such case one only needs to apply scenario
generation/reduction on each stage, with no concern for conditional
distributions!
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A case study Problem description

A case study: the Brazilian power system

(Work with E. Finardi and V. de Matos).

Composition:

Hydro and Thermal power plants

More than 70% of the power capacity is from hydro plants

Characteristics of the hydrothermal scheduling:

Stochastic, due to water inflows

Coupled in time and space

Nonlinear

Large scale (139 Hydro plants, 146 Thermal plants)
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A case study Problem description

The problem

Operational decisions are periodically reviewed, and must take into
account the decisions that will be made in the future.

The decisions must also hedge against the uncertainty of water
inflows.

Goal is to determine the optimal policy that minimizes the expected
total cost (consisting of thermal fuel costs and energy deficit
penalties) over a horizon.

Models for long-, medium- and short-term planning are used by
planners.
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A case study Problem description

Simplifications

Thermal units are considered to be linear.

Demand is treated as deterministic.

Hydro plants are aggregated into Energy Equivalent Reservoirs (EER).
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A case study Tree generation

Generating scenario trees

The water inflows at each EER are modeled using a calibrated periodic
auto-regressive process of the form

It = φ1It−1 + . . .+ φpIt−p + ξt ,

where the φk are coefficients and ξt is a random vector.

Note that such a structure yields random variables that are dependent
across stages.

Key transformation: By modeling the It ’s as state variables and
assuming the random noise ξt does not depend on t, it follows that
the input stochastic process is stagewise independent.

Although this modeling choice increases the number of variables, it
allows for easier scenario generation and also for the use of efficient
algorithms.
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A case study Tree generation

Generating an initial tree

We assume that the underlying stochastic process ξ := (ξ1, . . . , ξT ) is such
that the {ξt} are independent and each ξt is a d-dimensional random
vector with the ith component given by

ξit = eV
i
t + ∆i

t . (2)

In the above equation, the vector Vt = (V i
t )i=1,...,d is multivariate normal

with mean vector µt and covariance matrix Σt , whereas the ∆i
t are given

parameters.

1 Let Nt denote the number of branches to be generated at each node
in stage t;

2 For each t = 1, . . . ,T − 1:
1 Generate Nt d-dimensional multivariate normal random vectors

Vt,j , j = 1, . . . ,Nt with mean µt and covariance matrix Σt ;
2 For each node in stage t, generate Nt children nodes using the relation

(2) for each j and each i .

Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 13 47 / 60



A case study Tree generation

Generating an initial tree

We assume that the underlying stochastic process ξ := (ξ1, . . . , ξT ) is such
that the {ξt} are independent and each ξt is a d-dimensional random
vector with the ith component given by

ξit = eV
i
t + ∆i

t . (2)

In the above equation, the vector Vt = (V i
t )i=1,...,d is multivariate normal

with mean vector µt and covariance matrix Σt , whereas the ∆i
t are given

parameters.

1 Let Nt denote the number of branches to be generated at each node
in stage t;

2 For each t = 1, . . . ,T − 1:
1 Generate Nt d-dimensional multivariate normal random vectors

Vt,j , j = 1, . . . ,Nt with mean µt and covariance matrix Σt ;
2 For each node in stage t, generate Nt children nodes using the relation

(2) for each j and each i .

Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 13 47 / 60



A case study Tree generation

Generating smaller trees

For the initial tree, all we want is that it represents well the original
process, so we could have a relatively large number of children for each
each node.

These points can be generated for example by Quasi Monte Carlo to
ensure representativeness.

In order to solve the problem, however, we need a much smaller tree (with,
say, about 20 children per node).

We will discuss some scenario reduction approaches next.
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A case study Numerical illustration

Numerical illustration

We compared six alternatives for two problems — one with 3 stages and
another with 5 stages.

Each node has dimension 2, corresponding to two reservoirs.

For the 3-stage problem, an initial tree with 75 children per node was
generated.

For the 5-stage problem, an initial tree with 50 children per node was
generated.

In both cases, we generated reduced trees with 5 children per node.
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A case study Numerical illustration

Numerical illustration

The six alternatives we compared with were:

The full tree

Random selection of scenarios in each stage

Backward heuristic (only for 3-stage problem) for scenarios of the full
tree

Forward heuristic (only for 3-stage problem) for scenarios of the full
tree

Random selection of scenarios from the full tree (only for 3-stage
problem)

A facility location problem per stage (only for 3-stage problem)

The graphs that follow depict the chosen scenarios in each case (without
the probabilities).
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A case study Numerical illustration

3-stage, random choice from full tree, both reservoirs
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A case study Numerical illustration

3-stage, random choice per stage, both reservoirs
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A case study Numerical illustration

3-stage, forward heuristic, both reservoirs
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A case study Numerical illustration

3-stage, backward heuristic, both reservoirs
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A case study Numerical illustration

Chosen distribution for backward selection

Scenario Probability
(3575.9, 37.0), (6683.7, 450.9) 0.000
(3575.9, 37.0), (7255.5, 193.7) 0.002
(3575.9, 37.0), (9719.4, 372.4) 0.000
(3575.9, 37.0), (7816.2, 446.4) 0.005
(3575.9, 37.0), (8365.6, 183.3) 0.005
(3575.9, 37.0), (8942.8, 536.2) 0.001

(4194.7, 128.5), (6683.7, 450.9) 0.006
(4194.7, 128.5), (7255.5, 193.7) 0.058
(4194.7, 128.5), (9719.4, 372.4) 0.013

(4194.7, 128.5), (8579.9, 1013.9) 0.042
(4194.7, 128.5), (7816.2, 446.4) 0.160
(4194.7, 128.5), (8365.6, 183.3) 0.166
(4194.7, 128.5), (8942.8, 536.2) 0.045
(4632.6, 568.6), (6683.7, 450.9) 0.002
(4632.6, 568.6), (7255.5, 193.7) 0.021
(4632.6, 568.6), (9719.4, 372.4) 0.005
(4632.6, 568.6), (7816.2, 446.4) 0.060
(4632.6, 568.6), (8365.6, 183.3) 0.063
(4632.6, 568.6), (8942.8, 536.2) 0.017
(5101.3, 148.9), (6683.7, 450.9) 0.004
(5101.3, 148.9), (7255.5, 193.7) 0.040
(5101.3, 148.9), (9719.4, 372.4) 0.009
(5101.3, 148.9), (7816.2, 446.4) 0.115
(5101.3, 148.9), (8365.6, 183.3) 0.124
(5101.3, 148.9), (8942.8, 536.2) 0.037
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A case study Numerical illustration

3-stage, facility location, Wasserstein order 1
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A case study Numerical illustration

Chosen distribution for Wasserstein order 1

Scenario Probability
(4074.5, 115.5), (8371.2, 340.1) 0.064
(4074.5, 115.5), (8830.0, 352.5) 0.054
(4074.5, 115.5), (7968.0, 194.7) 0.047
(4074.5, 115.5), (7739.0, 680.4) 0.041
(4074.5, 115.5), (7578.7, 200.7) 0.047
(4478.1, 148.8), (8371.2, 340.1) 0.068
(4478.1, 148.8), (8830.0, 352.5) 0.057
(4478.1, 148.8), (7968.0, 194.7) 0.050
(4478.1, 148.8), (7739.0, 680.4) 0.043
(4478.1, 148.8), (7578.7, 200.7) 0.050
(4639.8, 320.8), (8371.2, 340.1) 0.041
(4639.8, 320.8), (8830.0, 352.5) 0.034
(4639.8, 320.8), (7968.0, 194.7) 0.030
(4639.8, 320.8), (7739.0, 680.4) 0.026
(4639.8, 320.8), (7578.7, 200.7) 0.030
(4911.2, 134.3), (8371.2, 340.1) 0.064
(4911.2, 134.3), (8830.0, 352.5) 0.054
(4911.2, 134.3), (7968.0, 194.7) 0.047
(4911.2, 134.3), (7739.0, 680.4) 0.041
(4911.2, 134.3), (7578.7, 200.7) 0.047
(5482.6, 124.6), (8371.2, 340.1) 0.017
(5482.6, 124.6), (8830.0, 352.5) 0.014
(5482.6, 124.6), (7968.0, 194.7) 0.012
(5482.6, 124.6), (7739.0, 680.4) 0.011
(5482.6, 124.6), (7578.7, 200.7) 0.012
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A case study Numerical illustration

3-stage, facility location, Wasserstein order 3
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A case study Numerical illustration

Chosen distribution for Wasserstein order 3

Scenario Probability
(3983.5, 109.4), (9238.8, 532.4) 0.016
(3983.5, 109.4), (8459.1, 290.9) 0.090
(3983.5, 109.4), (7445.2, 510.1) 0.035

(3983.5, 109.4), (8579.9, 1013.9) 0.013
(3983.5, 109.4), (7818.5, 333.4) 0.086

(4418.5, 1026.5), (9238.8, 532.4) 0.001
(4418.5, 1026.5), (8459.1, 290.9) 0.005
(4418.5, 1026.5), (7445.2, 510.1) 0.002

(4418.5, 1026.5), (8579.9, 1013.9) 0.001
(4418.5, 1026.5), (7818.5, 333.4) 0.005
(4495.0, 270.6), (9238.8, 532.4) 0.026
(4495.0, 270.6), (8459.1, 290.9) 0.144
(4495.0, 270.6), (7445.2, 510.1) 0.057

(4495.0, 270.6), (8579.9, 1013.9) 0.021
(4495.0, 270.6), (7818.5, 333.4) 0.139
(4976.5, 214.6), (9238.8, 532.4) 0.020
(4976.5, 214.6), (8459.1, 290.9) 0.114
(4976.5, 214.6), (7445.2, 510.1) 0.045

(4976.5, 214.6), (8579.9, 1013.9) 0.016
(4976.5, 214.6), (7818.5, 333.4) 0.110
(5576.4, 55.9), (9238.8, 532.4) 0.004
(5576.4, 55.9), (8459.1, 290.9) 0.020
(5576.4, 55.9), (7445.2, 510.1) 0.008

(5576.4, 55.9), (8579.9, 1013.9) 0.003
(5576.4, 55.9), (7818.5, 333.4) 0.019
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A case study Numerical illustration

References

[1] M. A. H. Dempster, E. A. Medova, and Y. S. Yong. Comparisons of
sampling methods for dynamic stochastic programming. In
M. Bertocchi, G. Consigli, and M. A. H. Dempster, editors, Stochastic
Optimization Methods in Finance and Energy, chapter 389–425.
Springer, 2011.

[2] H. Heitsch and W. Römisch. Scenario tree modeling for multistage
stochastic programs. Math Program, 118:371–406, 2009.

[3] R. Mirkov and G. C. Pflug. Tree approximations of dynamic stochastic
programs. SIAM J. Optim., 18(3):1082–1105, 2007.

[4] G. C. Pflug. Version-independence and nested distributions in
multistage stochastic optimization. SIAM Journal on Optimization, 20
(3):1406–1420, 2009.

[5] G. C. Pflug and A. Pichler. Dynamic generation of scenario trees.
Comput. Optim. Appl., 62(3):641–668, Dec. 2015.

Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 13 60 / 60


	Probability metrics approaches for scenario generation
	Stability results
	The Monge-Kantorovich problem
	Probability distances via M-K

	Stochastic Dynamic Problems
	Formulation 
	Sampling approaches
	Tree processes
	Probability distances in the dynamic case
	Algorithms

	A case study
	Problem description
	Tree generation
	Numerical illustration


