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Introduction Linear programs with uncertainty

Linear programs with uncertainty

Many optimization problems can be formulated as linear programs:

min bT x (LP)

s.t. Ax ≥ c .

Suppose there is some uncertainty in the coefficients A and c .

For example, the constraint Ax ≥ c could represent “total energy
production must satisfy demand”, but

Demand is uncertain.

Actual produced amount from each energy source is a (random)
percentage of the planned amount.

What to do?

Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 9 3 / 30



Introduction Linear programs with uncertainty

Dealing with uncertainty

Some possibilities:

Impose that constraint Ax ≥ c must be satisfied regardless of the
outcome of A and c .

Impose that constraint Ax ≥ c must be satisfied with some
probability, i.e., solve

min {bT x : P(Ax ≥ c) ≥ 1− α} for some small α > 0.

Penalize the expected constraint violation, i.e., solve

min bT x + µE[max{c − Ax , 0}] for some µ > 0.

Difficulty: How to solve any of these formulations?
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Introduction Linear programs with uncertainty

The need for approximation

Even before we think of optimization methods to solve the above
problems, we need to deal with an even more basic issue:

How to compute quantities such as P(Ax ≥ c) or E[max{c −Ax , 0}]?

Very hard to do! (except in special cases)

We need to approximate these quantities with something we can
compute.
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Introduction Estimating means

The estimation problem: an example

Suppose we have a vector of m random variables X := (X1, . . . ,Xm) and
we want to calculate

g := E[G (X )] = E[G (X1, . . . ,Xm)],

where G is a function that maps m-dimensional vectors to the real
numbers.

Example: find the expected completion time of a project.

Project has 3 components, given by activities
1
2 and 5
3, 4 and 5

.

G (X ) = max{X1,X2 + X5,X3 + X4 + X5}
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Introduction Estimating means

The estimation problem

How to do that?

Suppose that each variable Xk can take r possible values, denoted
x1
k , . . . , x

r
k . If we want to compute the exact value, we have to

compute

E[G (X )] =
r∑

k1=1

r∑
k2=1

. . .

r∑
km=1

G (xk1
1 , . . . , x

km
m ) P(X1 = xk1

1 , . . . ,Xm = xkm
m )

In the above example, suppose each variable can take r = 10 values.
If the travel times are independent, then we have a total of

105 = 100, 000 possible outcomes for G (X )!
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Introduction Estimating means

The estimation problem

Imagine now this project:

Path 1: 1-2-6-8-7-18

Path 2: 1-2-6-8-16-18

Path 3: 1-3-4-11-10-16-18

Path 4: 1-3-4-5-6-8-7-18

Path 5: 1-3-4-5-6-8-16-18

Path 6: 1-3-4-5-9-8-7-18

Path 7: 1-3-4-5-9-8-16-18

Path 8:1-3-4-5-9-10-16-18

Path 9:1-3-12-11-10-16-18

Path10:1-3-12-13-24-21-20-18

Path11:1-3-12-13-24-21-22-20-18

Path12:1-3-12-13-24-23-22-20-18 

It is totally impractical to calculate the exact value!

The problem is even worse if the distributions are continuous.
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Introduction Estimating means

The need for scenarios

The example shows that we need a method that can help us approximate
distributions with a finite (and not too large) set of scenarios.

Issues:

How to select such a set of scenarios?

What guarantees can be given about the quality of the
approximation?

As we shall see, there are two classes of approaches:

Sampling methods

Deterministic methods

Each class requires its own tools to answer the two questions above.
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Introduction Estimating means

The estimation problem via sampling

Idea: Let X j := (X j
1, . . . ,X

j
m) denote one sample from the random vector

X .

Draw N independent and identically distributed (iid) samples
X 1, . . . ,XN .

Compute

ĝN :=
1

N

N∑
j=1

G (X j).

Recall the Strong Law of Large Numbers: as N goes to infinity,

lim
N→∞

ĝN = E[G (X )] with probability one (w.p.1)

so we can use ĝN as an approximation of g = E[G (X )].
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Introduction Assessing the quality of the mean estimate

Assessing the quality of the approximation

ISSUE: ĝN is a random variable, since it depends on the sample.

That is, in one experiment ĝN may be close to g while in another it
may differ from g by a large amount!

Example: 200 runs of the completion time problem with N = 50.
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Introduction Assessing the quality of the mean estimate

Assessing the quality of the approximation

ISSUE: ĝN is a random variable, since it depends on the sample.

That is, in one experiment ĝN may be close to g while in another it
may differ from g by a large amount!
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Introduction Assessing the quality of the mean estimate

The Central Limit Theorem

Note that

E[ĝN ] = E

 1

N

N∑
j=1

G (X j)

 =
1

N

N∑
j=1

E
[
G (X j)

]
= g .

Also,

Var(ĝN) = Var

 1

N

N∑
j=1

G (X j)

 =
1

N2

N∑
j=1

Var(G (X j)) =
1

N
Var(G (X )).

The Central Limit Theorem asserts that, for N sufficiently large,

√
N (ĝN − g)

σ
≈ Normal(0, 1),

where σ2 = Var(G (X )).
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Introduction Assessing the quality of the mean estimate

Computing the margin of error of the estimate

The CLT implies that

P

(
ĝN − 1.96

σ√
N
≤ g ≤ ĝN + 1.96

σ√
N

)
= 0.95.

That is, out of 100 experiments, on average in 95 of those the interval
given by [

ĝN − 1.96
σ√
N
, ĝN + 1.96

σ√
N

]
will contain the true value g .

The above interval is called a 95% confidence interval for g .

Note that σ2 is usually unknown. Again, when N is large enough we
can approximate σ2 with

S2
N :=

∑N
j=1

(
G (X j)− ĝN

)2
N − 1

.
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Introduction Deterministic approximation of the mean

The estimation problem via deterministic approximation

One idea is to approximate the distribution of each Xi with a discrete
distribution with small number of points (say, 3 points).

But even then we have to sum up 3m terms!

Also, it is difficult to assess the quality of the approximation...

How about quadrature rules to approximate integrals (e.g., Simpson’s
rule)?

They work well for low-dimensional problems.
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The SAA approach The basic idea

From estimation to optimization

Consider a generic stochastic optimization problem of the form

min
x∈X
{g(x) := E[G (x , ξ)]} , (SP)

where:

G is a real-valued function representing the quantity of interest (cost,
revenues, etc.).

The inputs for G are the decision vector x and a random vector ξ
that represents the uncertainty in the problem.

X is the set of feasible points.
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The SAA approach The basic idea

The need for approximation

As before, if G is not a simple function, or if ξ is not low-dimensional,
then we need to approximate the problem, since we cannot evaluate g(x)
exactly.

As before, we can use either sampling or deterministic
approximations.

Issue: What is the effect of the approximation on the optimal value
and/or optimal solutions of the problem?
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The SAA approach The basic idea

The newsvendor problem, revisited

Newsvendor purchases papers in the morning at price c and sells them
during the day at price r

Unsold papers are returned at the end of the day for salvage value s.

If we want to maximize the expected revenue, then we have to solve

min
x≥0
{g(x) := E[G (x , ξ)]} ,

where

G (x , ξ) := −cx + r min{x , ξ}+ s(x −min{x , ξ})
= (s − c)x + (r − s) min{x , ξ}
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The SAA approach The basic idea

Approximation with sampling

As we saw before, we can approximate the value of g(x) (for each given x)
with a sample average.

That is, for each x ∈ X we can draw a sample {ξ1x , . . . , ξNx } from the
distribution of ξ, and approximate g(x) with

g̃N(x) :=
1

N

N∑
j=1

G (x , ξjx).

But: It is useless to generate a new approximation for each x!
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The SAA approach The basic idea

The Sample Average Approximation approach

The idea of the Sample Average Approximation (SAA) approach is to use
the same sample for all x .

That is, we draw a sample {ξ1, . . . , ξN} from the distribution of ξ, and
approximate g(x) with

ĝN(x) :=
1

N

N∑
j=1

G (x , ξj).
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The SAA approach The basic idea

The Sample Average Approximation approach

We can see that the approximation is very close to the real function.

This suggests replacing the original problem with

min
x∈X

ĝN(x),

which can be solved using a deterministic optimization algorithm!

Questions:

Does that always work, i.e. for any function G (x , ξ)?

What is a “good” sample size to use?

What can be said about the quality of the solution returned by the
algorithm?
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The SAA approach Asymptotic properties of SAA

Asymptotic properties

Let us study first what happens as the sample size N goes to infinity.

It is important to understand what that means. Consider the following
hypothetical experiment:

We draw a sample of infinite size, call it {ξ1, ξ2, . . .}. We call that a
sample path.

Then, for each N, we construct the approximation

ĝN(·) =
1

N

N∑
j=1

G (·, ξj)

using the first N terms of that sample path, and we solve

min
x∈X

ĝN(x). (SPN)
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The SAA approach Asymptotic properties of SAA

Asymptotic properties

Let

x̂N := an optimal solution of (SPN)

SN := the set of optimal solutions of (SPN)

νN := the optimal value of (SPN)

and

x∗ := an optimal solution of (SP)

S∗ := the set of optimal solutions of (SP)

ν∗ := the optimal value of (SP)

As the sample size N goes to infinity, does

x̂N converge to some x∗?

SN converge to the set S∗?

νN converge to ν∗?
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The SAA approach Asymptotic properties of SAA

Asymptotic properties, continuous distributions

We illustrate the asymptotic properties with the newsvendor problem.

We will study separately the cases when demand ξ has a continuous and a
discrete distribution.

Suppose first demand has an Exponential(10) distribution.
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The SAA approach Asymptotic properties of SAA

Asymptotic properties, continuous distributions

It seems the functions ĝN are converging to g . The table lists the values
of x̂N and νN (N =∞ corresponds to the true function):

N 10 30 90 270 ∞
x̂N 1.46 1.44 1.54 2.02 2.23

νN -1.11 -0.84 -0.98 -1.06 -1.07

So, we see that x̂N → x∗ and νN → ν∗!
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The SAA approach Asymptotic properties of SAA

Asymptotic properties, discrete distributions

Now let us look at the case when ξ has a discrete distribution.

Suppose demand has discrete uniform distribution on {1, 2, . . . , 10}.
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The SAA approach Asymptotic properties of SAA

Asymptotic properties, discrete distributions

Again, it seems the functions ĝN are converging to g . The table lists the
values of x̂N and νN (N =∞ corresponds to the true function):

N 10 30 90 270 ∞
x̂N 2 3 3 2 [2,3]

νN -2.00 -2.50 -1.67 -1.35 -1.50

We see that νN → ν∗. However, x̂N does not seem to be converging at all.

On the other hand, x̂N is oscillating between two optimal solutions of
the true problem!

How general is this conclusion?

Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 9 27 / 30



The SAA approach Asymptotic properties of SAA

Convergence result

We can see from both figures that ĝN(·) converges uniformly to g(·).

Uniform convergence occurs for example when the functions are
convex.

The following result is general:

Theorem

When uniform convergence holds, we have the following results:

1 νN → ν∗ with probability one (w.p.1),

2 Suppose that there exists a compact set C such that (i) ∅ 6= S∗ ⊆ C
and ∅ 6= SN ⊆ C w.p.1 for N large enough, and (ii) the objective
function is finite and continuous on C . Then, dist(SN , S

∗)→ 0 w.p.1.
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The SAA approach Asymptotic properties of SAA

Convergence result (cont.)

What does “convergence with probability one” means?

Recall that the functions ĝN in the above example were constructed
from a single sample path.

The theorem tells us that, regardless of the sample path we pick, we
have convergence as N →∞!

So, let us repeat the above experiment (only for N = 270) multiple times,
each time with a different sample path:
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The SAA approach Asymptotic properties of SAA

Convergence result (cont.)

We see that for some sample paths we have a very good approximation for
this N, (in this case, N = 270) but for others we don’t.

Why? Don’t we have convergence for all sample paths?

The problem is the theorem only guarantees convergence as N →∞.

So, for some path we quickly get a good approximation, whereas for
others we may need a larger N to achieve the same quality.

So, if we pick one sample of size N and solve min ĝN(x) as indicated by
the SAA approach, how do we know if we are on a “good” or on a “bad”
sample path?

The answer is...we don’t!

So, we need to have some probabilistic guarantees.
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