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General formulation

In this part of the course we will focus on efficient optimization methods to
solve convex programs of the form

min f(x) s.t. x ∈ X ,

with

I f : <n → < a convex but nonsmooth function

I X ⊂ <n a convex set (e.g. X = {x ∈ <n
+ : Ax = b}, X = <n)

This formulation covers many practical optimization problems, for instance

I Two-stage stochastic programming problems

I Multistage stochastic programming problems



Two-stage stochastic linear programming

In two-stage stochastic linear programming problems with finitely many
scenarios ξi = (qi, T i,W i, hi) we wish to solve the high dimensional LP min c>x+

∑N
i=1 pi[q

i>yi]
s.t. Ax = b, x ≥ 0

T ix+W iyi = hi, yi ≥ 0, i = 1, . . . , N

Two-stage decomposition

min f(x) s.t. x ∈ X , with f(x) := c>x+

N∑
i=1

piQ(x, ξi) ,

Q(x, ξ) =

 min q>y
s.t. Wy = h− Tx

y ≥ 0 .
and X := {x ∈ <n

+ : Ax = b}

We know that g = c−
∑N

i=1 piT
i>πi ∈ ∂f(x), where πi is a dual solution of

Q(x, ξi)
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Multistage stochastic linear programs

min
A1x1=b1

x1≥0

c
>
1 x1 + E

 min
B2x1+A2x2=b2

x2≥0

c
>
2 x2 + E

· · · + E[ min
BT xT−1+AT xT =bT

xT≥0

c
>
T xT ]




I Some elements of the data ξ = (ct, Bt, At, bt) depend on uncertainties.

By assuming finitely many scenarios and dualizing the nonantecipativity
constraints (that can be written as Gx = 0) we get



Multistage stochastic linear programs

(See Lecture 17)

Dual problem

min
u

f(u) , with f(u) := −
N∑
i=1

Di(u)

Di(u) :=


minxi pi

∑T
t=1(cit)

>xit + u>Gixi

s.t. A1x1 = b1
Bi

tx
i
t−1 +Ai

tx
i
t = bkt , t = 2, . . . , T

xit ≥ 0 .

Computing f(u) for each given u amounts to solving N LPs.

We know that g = −Gx(u) ∈ ∂f(u), where x(u) = (x1(u), . . . , xN (u)) and
xi(u) is a solution of Di(u)



Let’s stick with the more compact and general formulation

min f(x) s.t. x ∈ X ,

with f : <n → < a convex but nonsmooth function and X ⊂ <n a convex
set.
We’ll assume the availability of an oracle providing us with first-order
information on f :

x −→
�� ��Oracle −→

{
function value f(x)
subgradient g ∈ ∂f(x)

In stochastic programming, the oracle should be smart enough to use
parallel computing:

I the oracle consists of solving N optimization subproblems to compute
f(x) and a subgradient g

I most of time dedicate to minimize f is spent in the oracle!

Therefore, subgradient and (pure) cutting-plane methods are not very
efficient1...

1These methods require, in general, many oracle calls.



Cutting-plane method

Consider the problem
min
x∈X

f(x)

and suppose that X is a compact set.

Algorithm

1. Given x0 ∈ X, call the oracle to compute f(x0) and g0 ∈ ∂f(x0). Set
fup
0 = f(x0) and k = 0

2. (iterate) Find xk+1 = arg minx∈X f̌k(x). Let f low
k = f̌k(xk+1).

3. (stopping test) If fup
k − f

low is small enough, stop.

4. (oracle) Compute f(xk+1), gk+1 ∈ ∂f(xk) and set
fup
k+1 = min{f(xk+1), fup

k }.
5. (loop) Set k ← k + 1 and go back to Step 2.

Cutting-plane model

f̌k(·) = max
j=1,...,k

{f(xj) + gj
>(· − xj)}



Cutting-plane method
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Cutting-plane method
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6 iterações!



Cutting-plane method

The method requires solving a LP at each iteration

xk+1 = arg min
x∈X

f̌k(x), f̌k(·) = max
j=1,...,k

{f(xj) + gj
>(· − xj)}

that is equivalent to
minx,r r

s.t. f(xj) + gj
>(x− xj) ≤ r, j = 1, . . . , k

x ∈ X, r ∈ <.

A new constraint is added at each iteration!



Cutting-plane method

Pros × Cons

U only computes a single subgradient per iteration

U easy to code

U easy and reliable stopping test

D f(xk+1) 6< f(xk) (it is not a descent method)

D instable and has low convergence rate

D requires compactness of the feasible set

D doesn’t exploit good starting points

D subproblem becomes heavier and heavier...

The Regularized Decomposition Method (1986) for 2-SLP address some of
the above drawbacks.
Regularized Decomposition Method is just a particular case of (proximal)
Bundle Methods!



Bundle methods

Bundle methods

Main ingredients

(i) a convex model fM
k ≤ f (eg. cutting-plane model)

(ii) a stability center x̂k (eg.: the best point so far)

(iii) a parameter tk (or f lev
k ) to be updated at every iteration

The next trial point xk+1 of a bundle method depends on the above 3
ingredients, whose organization define different methods:

Proximal bundle method (tk > 0)

xk+1 := arg min

{
fM
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
.

Level bundle method (f lev
k ∈ <)

xk+1 := arg min

{
1

2
‖x− x̂k‖2 : fM

k (x) ≤ f lev
k , x ∈ X

}
.

Today we focus on proximal bundle method!



Bundle methods

Proximal bundle method

f
M ≡ f̌ , xk+1 := arg min

{
f̌k(x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
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Bundle methods

Proximal bundle method

f
M ≡ f̌ , xk+1 := arg min

{
f̌k(x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}

)(xf

1x

)( 3
2 zφ

2z



Bundle methods

Proximal bundle method

f
M ≡ f̌ , xk+1 := arg min

{
f̌k(x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}

)(xf

1x 2z3x



Bundle methods

Proximal bundle method

f
M ≡ f̌ , xk+1 := arg min

{
f̌k(x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
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4 Iterations!



Bundle methods

Proximal bundle method

Pros × Cons

U only computes a single subgradient per iteration

U easy and reliable stopping test

U stable

U does not require X to be compact

U it is a descent method

U exploit good-quality initial points

U subproblem defining xk+1 can be kept small

D convergence analysis is more involving...
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Bundle methods

Proximal bundle method

Let’s consider a more economical model:

fM
k (x) := max

j∈Bk
{f(xj) + gj

>(x− xj)}

I The cutting-plane method takes Bk := {1, 2, . . . , k}. We will consider
Bk ⊂ {1, 2, . . . , k} (or something a bit different)

I The method generates a sequence of trial points {xk} ⊂ X by solving a
QP:

xk+1 := arg min

{
fM
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
.



Bundle methods

Solving the QP subproblem

The QP

min

{
fM
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
can be rewritten as

minx,r r + 1
2tk
‖x− x̂k‖2

s.a f(xj) + g>j (x− xj) ≤ r, j ∈ Bk

x ∈ X, r ∈ < .

We can apply specialized softwares.



Bundle methods

Proximal bundle method

xk+1 := arg min

{
f
M
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
.

A rule decide when to update the stability center x̂k. Such rule depends on
the predicted decrease by the model fM

k

vk = f(x̂k)− fM
k (xk+1)

and a constant κ ∈ (0, 1):

I Serious step: if f(xk+1) ≤ f(x̂k)− κvk, then

x̂k+1 ← xk+1

I Null step: if f(xk+1) > f(x̂k)− κvk, then

x̂k+1 ← x̂k

The serious-step sequence {x̂k} is a subsequence of {xk}



Bundle methods

Next iterate

Lemma
Suppose that X is a polyhedron or ri(X) 6= ∅. Then

xk+1 = x̂k − tkĝk com ĝk = pkf + pkX ,

where pkf ∈ ∂fM
k (xk+1) and pkX ∈ ∂iX(xk+1).

(iX is the indicator function of X.)

Furthermore, the affine function

fL
ka(x) := fM

k (xk+1) + 〈ĝk, x− xk+1〉

is a lower approximation for the model fM
k :

fL
ka(x) ≤ fM

k (x) ∀ x ∈ X.



Bundle methods

Optimality measure

Propositon
Let the predicted decrease and aggregate linearization error defined by

vk := f(x̂k)− fM
k (xk+1) and êk := f(x̂k)− fL

ka(x̂k) .

Then,
êk ≥ 0, êk + tk‖ĝk‖2 = vk ≥ 0 for all k.

Furthermore

f(x̂k) ≤ f(x) + êk + ‖ĝk‖‖x̂k − x‖ for all x ∈ X and k .

If (êk, ĝk) = 0, then x̂k is solution to the problem



Bundle methods

Algorithm: proximal bundle method

f
M
k (x) = max

j∈Bk
{f(xj) + gj

>
(x− xj)}, xk+1 = arg min

{
f
M
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}

Step 0. Choose κ ∈ (0, 1), t1 ≥ tmin > 0, x1 ∈ X and tolerance
tol > 0. Call the oracle to compute (f(x1), g1). Define
x̂1 ← x1, k ← 1, B1 ← {1},

Step 1. Solve the QP to obtain xk+1. Define ĝk ← (x̂k − xk+1)/tk,
vk ← f(x̂k)− f̌k(xk+1), and êk ← vk − tk‖ĝk‖2

Step 2. If êk ≤ tol and ‖ĝk‖ ≤ tol, stop: x̂k is an approximate
solution

Step 3. Call the oracle to obtain (f(xk+1), gk+1)

Serious step. If f(xk+1) ≤ f(x̂k)− κvk, then x̂k+1 ← xk+1

and choose tk+1 ≥ tk
Null step. Otherwise, define x̂k+1 ← x̂k and choose
tk+1 ∈ [tmin, tk]

Step 4. Choose Bk+1 ⊃ {k + 1, ka}
Set k ← k + 1 and go back to Step 1.



Bundle methods

Some comments

I Only 2 linearizations are required: fL
k and fL

ka , i.e.,

Bk+1 = {k + 1, ka} suffices!

I the prox-parameter tk is non-increasing along null steps

I a simple heuristic to update the prox-parameter is the following

I compute taux := tk

(
1 +

(gk+1−gk)
>(xk+1−xk)

‖gk+1−gk‖2

)
I if null step: tk+1 ← min{tk, max{taux, tk/2, tmin}}
I if serious step: tk+1 ← max{tk, min{taux, 10tk}}

I it is advisable to consider different tolerances for the measures êk and
ĝk

I the sequence {f(x̂k)} is non-increasing

I any accumulation point of {x̂k} is a solution to the problem


