
Bundle methods for stochastic programs

Proximal bundle method

Welington de Oliveira

BAS Lecture 25, June 9, 2016, IMPA

General formulation

In this part of the course we will focus on efficient optimization methods to
solve convex programs of the form

min f(x) s.t. x ∈ X ,

with

I f : <n → < a convex but nonsmooth function

I X ⊂ <n a convex set (e.g. X = {x ∈ <n
+ : Ax = b}, X = <n)

This formulation covers many practical optimization problems, for instance

I Two-stage stochastic programming problems

I Multistage stochastic programming problems

Two-stage stochastic linear programming

In two-stage stochastic linear programming problems with finitely many
scenarios ξi = (qi, T i,W i, hi) we wish to solve the high dimensional LP min c>x+

∑N
i=1 pi[q

i>yi]
s.t. Ax = b, x ≥ 0

T ix+W iyi = hi, yi ≥ 0, i = 1, . . . , N

Two-stage decomposition

min f(x) s.t. x ∈ X , with f(x) := c>x+

N∑
i=1

piQ(x, ξi) ,

Q(x, ξ) =

 min q>y
s.t. Wy = h− Tx

y ≥ 0 .
and X := {x ∈ <n

+ : Ax = b}

We know that g = c−
∑N

i=1 piT
i>πi ∈ ∂f(x), where πi is a dual solution of

Q(x, ξi)

Two-stage stochastic linear programming

In two-stage stochastic linear programming problems with finitely many
scenarios ξi = (qi, T i,W i, hi) we wish to solve the high dimensional LP min c>x+

∑N
i=1 pi[q

i>yi]
s.t. Ax = b, x ≥ 0

T ix+W iyi = hi, yi ≥ 0, i = 1, . . . , N

Two-stage decomposition

min f(x) s.t. x ∈ X , with f(x) := c>x+
N∑
i=1

piQ(x, ξi) ,

Q(x, ξ) =

 min q>y
s.t. Wy = h− Tx

y ≥ 0 .
and X := {x ∈ <n

+ : Ax = b}

We know that g = c−
∑N

i=1 piT
i>πi ∈ ∂f(x), where πi is a dual solution of

Q(x, ξi)

Multistage stochastic linear programs

min
A1x1=b1

x1≥0

c
>
1 x1 + E

 min
B2x1+A2x2=b2

x2≥0

c
>
2 x2 + E

· · · + E[min
BT xT−1+AT xT =bT

xT≥0

c
>
T xT]




I Some elements of the data ξ = (ct, Bt, At, bt) depend on uncertainties.

By assuming finitely many scenarios and dualizing the nonantecipativity
constraints (that can be written as Gx = 0) we get

Multistage stochastic linear programs

(See Lecture 17)

Dual problem

min
u

f(u) , with f(u) := −
N∑
i=1

Di(u)

Di(u) :=


minxi pi

∑T
t=1(cit)

>xit + u>Gixi

s.t. A1x1 = b1
Bi

tx
i
t−1 +Ai

tx
i
t = bkt , t = 2, . . . , T

xit ≥ 0 .

Computing f(u) for each given u amounts to solving N LPs.

We know that g = −Gx(u) ∈ ∂f(u), where x(u) = (x1(u), . . . , xN (u)) and
xi(u) is a solution of Di(u)

Let’s stick with the more compact and general formulation

min f(x) s.t. x ∈ X ,

with f : <n → < a convex but nonsmooth function and X ⊂ <n a convex
set.
We’ll assume the availability of an oracle providing us with first-order
information on f :

x −→
�� ��Oracle −→

{
function value f(x)
subgradient g ∈ ∂f(x)

In stochastic programming, the oracle should be smart enough to use
parallel computing:

I the oracle consists of solving N optimization subproblems to compute
f(x) and a subgradient g

I most of time dedicate to minimize f is spent in the oracle!

Therefore, subgradient and (pure) cutting-plane methods are not very
efficient1...

1These methods require, in general, many oracle calls.

Cutting-plane method

Consider the problem
min
x∈X

f(x)

and suppose that X is a compact set.

Algorithm

1. Given x0 ∈ X, call the oracle to compute f(x0) and g0 ∈ ∂f(x0). Set
fup
0 = f(x0) and k = 0

2. (iterate) Find xk+1 = arg minx∈X f̌k(x). Let f low
k = f̌k(xk+1).

3. (stopping test) If fup
k − f

low is small enough, stop.

4. (oracle) Compute f(xk+1), gk+1 ∈ ∂f(xk) and set
fup
k+1 = min{f(xk+1), fup

k }.
5. (loop) Set k ← k + 1 and go back to Step 2.

Cutting-plane model

f̌k(·) = max
j=1,...,k

{f(xj) + gj
>(· − xj)}

Cutting-plane method

)(xf

1
x

X

Cutting-plane method

)(xf

1
x

X

2
x

Cutting-plane method

)(xf

1
x

X

2
x

3
x

Cutting-plane method

)(xf

1
x

X

2
x

3
x

4
x

Cutting-plane method

)(xf

1
x

X

2
x

3
x

4
x

5
x

Cutting-plane method

)(xf

1
x

X

2
x

3
x

4
x

5
x *6

xx =

6 iterações!

Cutting-plane method

The method requires solving a LP at each iteration

xk+1 = arg min
x∈X

f̌k(x), f̌k(·) = max
j=1,...,k

{f(xj) + gj
>(· − xj)}

that is equivalent to
minx,r r

s.t. f(xj) + gj
>(x− xj) ≤ r, j = 1, . . . , k

x ∈ X, r ∈ <.

A new constraint is added at each iteration!

Cutting-plane method

Pros × Cons

U only computes a single subgradient per iteration

U easy to code

U easy and reliable stopping test

D f(xk+1) 6< f(xk) (it is not a descent method)

D instable and has low convergence rate

D requires compactness of the feasible set

D doesn’t exploit good starting points

D subproblem becomes heavier and heavier...

The Regularized Decomposition Method (1986) for 2-SLP address some of
the above drawbacks.
Regularized Decomposition Method is just a particular case of (proximal)
Bundle Methods!

Bundle methods

Bundle methods

Main ingredients

(i) a convex model fM
k ≤ f (eg. cutting-plane model)

(ii) a stability center x̂k (eg.: the best point so far)

(iii) a parameter tk (or f lev
k) to be updated at every iteration

The next trial point xk+1 of a bundle method depends on the above 3
ingredients, whose organization define different methods:

Proximal bundle method (tk > 0)

xk+1 := arg min

{
fM
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
.

Level bundle method (f lev
k ∈ <)

xk+1 := arg min

{
1

2
‖x− x̂k‖2 : fM

k (x) ≤ f lev
k , x ∈ X

}
.

Today we focus on proximal bundle method!

Bundle methods

Proximal bundle method

f
M ≡ f̌ , xk+1 := arg min

{
f̌k(x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}

)(xf

1x

Bundle methods

Proximal bundle method

f
M ≡ f̌ , xk+1 := arg min

{
f̌k(x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}

)(xf

1x

)(2
1 zφ

Bundle methods

Proximal bundle method

f
M ≡ f̌ , xk+1 := arg min

{
f̌k(x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}

)(xf

1x

)(3
2 zφ

2z

Bundle methods

Proximal bundle method

f
M ≡ f̌ , xk+1 := arg min

{
f̌k(x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}

)(xf

1x 2z3x

Bundle methods

Proximal bundle method

f
M ≡ f̌ , xk+1 := arg min

{
f̌k(x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}

)(xf

1
x 2

z
3

x
4

x

4 Iterations!

Bundle methods

Proximal bundle method

Pros × Cons

U only computes a single subgradient per iteration

U easy and reliable stopping test

U stable

U does not require X to be compact

U it is a descent method

U exploit good-quality initial points

U subproblem defining xk+1 can be kept small

D convergence analysis is more involving...

Bundle methods

Proximal bundle method

Pros × Cons

U only computes a single subgradient per iteration

U easy and reliable stopping test

U stable

U does not require X to be compact

U it is a descent method

U exploit good-quality initial points

U subproblem defining xk+1 can be kept small

D convergence analysis is more involving...

Bundle methods

Proximal bundle method

Let’s consider a more economical model:

fM
k (x) := max

j∈Bk
{f(xj) + gj

>(x− xj)}

I The cutting-plane method takes Bk := {1, 2, . . . , k}. We will consider
Bk ⊂ {1, 2, . . . , k} (or something a bit different)

I The method generates a sequence of trial points {xk} ⊂ X by solving a
QP:

xk+1 := arg min

{
fM
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
.

Bundle methods

Solving the QP subproblem

The QP

min

{
fM
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
can be rewritten as

minx,r r + 1
2tk
‖x− x̂k‖2

s.a f(xj) + g>j (x− xj) ≤ r, j ∈ Bk

x ∈ X, r ∈ < .

We can apply specialized softwares.

Bundle methods

Proximal bundle method

xk+1 := arg min

{
f
M
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}
.

A rule decide when to update the stability center x̂k. Such rule depends on
the predicted decrease by the model fM

k

vk = f(x̂k)− fM
k (xk+1)

and a constant κ ∈ (0, 1):

I Serious step: if f(xk+1) ≤ f(x̂k)− κvk, then

x̂k+1 ← xk+1

I Null step: if f(xk+1) > f(x̂k)− κvk, then

x̂k+1 ← x̂k

The serious-step sequence {x̂k} is a subsequence of {xk}

Bundle methods

Next iterate

Lemma
Suppose that X is a polyhedron or ri(X) 6= ∅. Then

xk+1 = x̂k − tkĝk com ĝk = pkf + pkX ,

where pkf ∈ ∂fM
k (xk+1) and pkX ∈ ∂iX(xk+1).

(iX is the indicator function of X.)

Furthermore, the affine function

fL
ka(x) := fM

k (xk+1) + 〈ĝk, x− xk+1〉

is a lower approximation for the model fM
k :

fL
ka(x) ≤ fM

k (x) ∀ x ∈ X.

Bundle methods

Optimality measure

Propositon
Let the predicted decrease and aggregate linearization error defined by

vk := f(x̂k)− fM
k (xk+1) and êk := f(x̂k)− fL

ka(x̂k) .

Then,
êk ≥ 0, êk + tk‖ĝk‖2 = vk ≥ 0 for all k.

Furthermore

f(x̂k) ≤ f(x) + êk + ‖ĝk‖‖x̂k − x‖ for all x ∈ X and k .

If (êk, ĝk) = 0, then x̂k is solution to the problem

Bundle methods

Algorithm: proximal bundle method

f
M
k (x) = max

j∈Bk
{f(xj) + gj

>
(x− xj)}, xk+1 = arg min

{
f
M
k (x) +

1

2tk
‖x− x̂k‖2 : x ∈ X

}

Step 0. Choose κ ∈ (0, 1), t1 ≥ tmin > 0, x1 ∈ X and tolerance
tol > 0. Call the oracle to compute (f(x1), g1). Define
x̂1 ← x1, k ← 1, B1 ← {1},

Step 1. Solve the QP to obtain xk+1. Define ĝk ← (x̂k − xk+1)/tk,
vk ← f(x̂k)− f̌k(xk+1), and êk ← vk − tk‖ĝk‖2

Step 2. If êk ≤ tol and ‖ĝk‖ ≤ tol, stop: x̂k is an approximate
solution

Step 3. Call the oracle to obtain (f(xk+1), gk+1)

Serious step. If f(xk+1) ≤ f(x̂k)− κvk, then x̂k+1 ← xk+1

and choose tk+1 ≥ tk
Null step. Otherwise, define x̂k+1 ← x̂k and choose
tk+1 ∈ [tmin, tk]

Step 4. Choose Bk+1 ⊃ {k + 1, ka}
Set k ← k + 1 and go back to Step 1.

Bundle methods

Some comments

I Only 2 linearizations are required: fL
k and fL

ka , i.e.,

Bk+1 = {k + 1, ka} suffices!

I the prox-parameter tk is non-increasing along null steps

I a simple heuristic to update the prox-parameter is the following

I compute taux := tk

(
1 +

(gk+1−gk)
>(xk+1−xk)

‖gk+1−gk‖2

)
I if null step: tk+1 ← min{tk, max{taux, tk/2, tmin}}
I if serious step: tk+1 ← max{tk, min{taux, 10tk}}

I it is advisable to consider different tolerances for the measures êk and
ĝk

I the sequence {f(x̂k)} is non-increasing

I any accumulation point of {x̂k} is a solution to the problem

