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GENERAL FORMULATION

In this part of the course we will focus on efficient optimization methods to
solve convex programs of the form

min f(z) st. z€ X,

with

> f:R" — R a convex but nonsmooth function
» X CR" aconvex set (e.g. X ={z e R} : Az =01}, X =R")
This formulation covers many practical optimization problems, for instance
» Two-stage stochastic programming problems
» Multistage stochastic programming problems
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TWO-STACGE STOCHASTIC LINEAR PROGRAMMING

In two-stage stochastic linear programming problems with finitely many
scenarios &' = (¢*,T",W", h') we wish to solve the high dimensional LP

min ¢z + N, pile’ ' y]
st. Azx=b, >0
T'z+W'y'=h',y >0, i=1,...,N
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TWO-STACGE STOCHASTIC LINEAR PROGRAMMING

In two-stage stochastic linear programming problems with finitely many
scenarios &' = (¢*,T",W", h') we wish to solve the high dimensional LP

min ¢z + N, pile’ ' y]
st. Azx=b, >0
T'z+W'y'=h',y >0, i=1,...,N

TWO-STAGE DECOMPOSITION

N
min f(z) st. z€ X, with f(z):= clx+ ZPiQ(LE,fi) )

1=1

min ¢y
Q(z,§)=¢ st. Wy=h-Tz and X :={zxeR}:Azx =10}
y=>0.

We know that g = ¢ — Zi\;l piTiTwi € 0f(x), where 7" is a dual solution of
Q(x,€")

}VAN 2016



MULTISTAGE STOCHASTIC LINEAR PROGRAMS

min cjzl +E c;zT]

min c;zg +E|[---4+E[ min
Ajwy=by Bawy+Agzy=by Brzp_1+Apzp=byp
120 320 zp >0

» Some elements of the data & = (¢, By, A¢, bt) depend on uncertainties.

By assuming finitely many scenarios and dualizing the nonantecipativity
constraints (that can be written as Gz = 0) we get
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MULTISTAGE STOCHASTIC LINEAR PROGRAMS

(See Lecture 17)
DUAL PROBLEM
N

min f(u), with [(u):= —> D'(u)

=1

ming: ps Zthl(ci)Txi +u' Gy’

Di(u):=q St Awm=b
B;xfg,l +Alzt=bF t=2,...,T
x> 0.

Computing f(u) for each given u amounts to solving N LPs.

We know that g = —Gz(u) € 9f(u), where z(u) = (z' (u), .

. .,z (u)) and
2*(u) is a solution of D*(u)
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Let’s stick with the more compact and general formulation
min f(z) st. z€X,

with f: R" — R a convex but nonsmooth function and X C " a convex
set.

We’ll assume the availability of an oracle providing us with first-order
information on f:

N . { function value  f(z)

subgradient g € 0f(x)

In stochastic programming, the oracle should be smart enough to use
parallel computing:

> the oracle consists of solving N optimization subproblems to compute
f(z) and a subgradient g
» most of time dedicate to minimize f is spent in the oracle!

Therefore, subgradient and (pure) cutting-plane methods are not very

efficient’...
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CUTTING-PLANE METHOD

Consider the problem
min f(z)

zeX

and suppose that X is a compact set.
ALGORITHM

1. Given zo € X, call the oracle to compute f(zo) and go € 9f(x0). Set
of = f(mo) and k=0

2. (iterate) Find xy 1 = argmingex fr(z). Let f1°Y = fu(@pr1).

3. (stopping test) If fi'® — f°¥ is small enough, stop.

4. (oracle) Compute f(zk+1), gr+1 € Of (z1) and set
fity = min{f (@), (7}

5. (loop) Set k < k + 1 and go back to Step 2.

CUTTING-PLANE MODEL

.....
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CUTTING-PLANE METHOD

F(x)
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CUTTING-PLANE METHOD
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CUTTING-PLANE METHOD
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CUTTING-PLANE METHOD
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CUTTING-PLANE METHOD
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CUTTING-PLANE METHOD

6 iteracoes!
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CUTTING-PLANE METHOD

The method requires solving a LP at each iteration

.....

that is equivalent to

ming , 7
s.t. flz))+gi (x—z))<r, j=1,...,k
zeX, reR.

A new constraint is added at each iteration!
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CUTTING-PLANE METHOD

Pros x CONS
(= only computes a single subgradient per iteration
(= easy to code

I'5 easy and reliable stopping test

I f(zre1) £ f(zk) (it is not a descent method)
I instable and has low convergence rate

I > requires compactness of the feasible set

I = doesn’t exploit good starting points

I > subproblem becomes heavier and heavier...

The Regularized Decomposition Method (1986) for 2-SLP address some of
the above drawbacks.
Regularized Decomposition Method is just a particular case of (proximal)
Bundle Methods!
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BUNDLE METHODS

BUNDLE METHODS

MAIN INGREDIENTS

(1) a convex model f* < f (eg. cutting-plane model)
(11) a stability center 5 (eg.: the best point so far)
(111) a parameter t (or fi°¥) to be updated at every iteration
The next trial point zx+1 of a bundle method depends on the above 3

ingredients, whose organization define different methods:
PROXIMAL BUNDLE METHOD (t; > 0)

) 1
Tpt1 = argmm{fk”(x)—i— llz —@x|®: = GX} .

LEVEL BUNDLE METHOD (fi¥ € R)

.1 A v
Thyl 1= argmm{§||m—a:k||2: fl(z) < fi, meX} .

Today we focus on proximal bundle method!
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BUNDLE METHODS
PROXIMAL BUNDLE METHOD

Py

f, Tp41 1= argmin {fk( ) + Hl N = X}
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BUNDLE METHODS
PROXIMAL BUNDLE METHOD

P . 1 X
™M= Tp41 1= argmin {fk(l) + BT e — @) : 2z € X}
i
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BUNDLE METHODS
PROXIMAL BUNDLE METHOD

P . 1 X
™M= Tp41 1= argmin {fk(l) + BT e — @) : 2z € X}
i
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BUNDLE METHODS
PROXIMAL BUNDLE METHOD

P (. 1 X
™M= Tp41 1= argmin {fk(l) + BT e — @) : 2z € X}
i
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BUNDLE METHODS
PROXIMAL BUNDLE METHOD

f M

i} § 1 X
7, Tp41 1= argmin {fk (x) + BT e — @) : 2z € X}
i

4 lterations!

|
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BUNDLE METHODS

PROXIMAL BUNDLE METHOD

Pros x CoNs

I's
(145}
(145}
145}
I's
I's

1=

only computes a single subgradient per iteration
easy and reliable stopping test

stable

does not require X to be compact

it is a descent method

exploit good-quality initial points

subproblem defining zx1 can be kept small
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BUNDLE METHODS

PROXIMAL BUNDLE METHOD

Pros x CoNs

I's
(145}
(145}
145}
I's
I's

1=

Iz

only computes a single subgradient per iteration
easy and reliable stopping test

stable

does not require X to be compact

it is a descent method

exploit good-quality initial points

subproblem defining zx1 can be kept small

convergence analysis is more involving...
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BUNDLE METHODS

PROXIMAL BUNDLE METHOD

Let’s consider a more economical model:

fil(z) == jmegf{f(l’j) +9; (x— =)}

» The cutting-plane method takes By := {1,2,...,k}. We will consider
Br € {1,2,...,k} (or something a bit different)

» The method generates a sequence of trial points {zx} C X by solving a
QP:
1

Tp41 = arg min {fly(x) +
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BUNDLE METHODS

SOLVING THE QP SUBPROBLEM

The QP

1
min{f;iw(ac)—i——\|m—§:k||2: xeX}
2ty

can be rewritten as

ming, 7+ ﬁ”x — &)
s.a f(z;) +ng($ —z;)<r, jEDB
reX, re®.

We can apply specialized softwares.
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BUNDLE METHODS
PROXIMAL BUNDLE METHOD

y 1
T4 = argmin {fk‘] () + S e —&x)*: z e X} .
tre

A rule decide when to update the stability center Zx. Such rule depends on
the predicted decrease by the model f*

vp = f(@k) = fi (Trt1)

and a constant k € (0, 1):

» Serious step: if f(zx+1) < f(Zx) — Kok, then
Tht1 ¢ Tht1
> Null step: if f(zr+1) > f(Zr) — Kvg, then

«ffk+1 < {lATk

The serious-step sequence {2} is a subsequence of {z\}
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BUNDLE METHODS

NEXT ITERATE

LEMMA
Suppose that X is a polyhedron or ri(X) # 0. Then

Tkl = Tk — teGr com gr = Plff + 7k,

where p’; € OfM (xry1) and p% € Dix(xpi1).
(ix is the indicator function of X.)

Furthermore, the affine function
fra(z) == fi (whs1) + (Go, @ — Trg1)
is a lower approzimation for the model f*:

fla(z) < fi'(z) VzeX.
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BUNDLE METHODS

OPTIMALITY MEASURE

PROPOSITON
Let the predicted decrease and aggregate linearization error defined by

v := f(2k) — fii' (Thi1) and &y = f(Er) — fra(Er).

Then,
ér >0, e +tgllgrl®> =vx >0 for all k.

Furthermore

F(@r) < f(x) + ék + lgrllllZe — || for allz € X and k.

If (éx, gr) = 0, then & is solution to the problem
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BUNDLE METHODS

ALGORITHM: PROXIMAL BUNDLE METHOD

. . 1 L2
fil(z) = max{f(z;) +g; (& —25)}, @rp1 = argmm{fk?%x) +o—llz—axl®: @€ X}
JEB 2ty

Step 0. Choose k € (0,1), t1 > tmin > 0, 1 € X and tolerance
tol > 0. Call the oracle to compute (f(z1),g1). Define
T — T, k +— 1, Bi + {1}7
Step 1. Solve the QP to obtain xg41. Define gi < (Zx — Trt1)/tk,
v 4= f(&r) = fr(@ri1), and &, vk — ti |||
Step 2. If é, < tol and ||gx|| < tol, stop: Zx is an approximate
solution
Step 3. Call the oracle to obtain (f(zk+1),gk+1)
Serious step. If f(zry1) < f(Zk) — Kok, then Zxi1  Tpia
and choose tx+1 > ti
Null step. Otherwise, define Zx4+1 < Zx and choose
tht1 € [tmin, Lk
Step 4. Choose Br+1 D {k+1,k%}

Set k <— k + 1 and go back to Step 1. }VAN 2016



BUNDLE METHODS

SOME COMMENTS

v

Only 2 linearizations are required: fi' and fi, i.e.,
Biy1 ={k+1,k"} suffices!

» the prox-parameter t; is non-increasing along null steps

> a simple heuristic to update the prox-parameter is the following

(9rt1—98) " (@pp1—2)

1

T Mokl

> if null step: tx41 < min{ty, max{taux, tx/2, tmin } }
> if serious step: tg41 < max{ty, min{taux, 10t5}}

> compute taux 1= tg (
> it is advisable to consider different tolerances for the measures é; and
gk
> the sequence {f(Zx)} is non-increasing

» any accumulation point of {Zx} is a solution to the problem
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