MULTISTAGE STOCHASTIC LINEAR PROGRAMMING PROBLEMS BLOCK SEPARABLE RECOURSE

Welington de Oliveira

BAS Lecture 16, May 3, 2016, IMPA

News

NESTED DECOMPOSITION - CONVERGENCE ANALYSIS

Block separable recourse

Set YouTube resolution to 480p

for best viewing

EXERCISES

Second list of exercises is available!

Deadline: 02/06/2016

MINI COURSES > SCENARIO GENERATION AND SAMPLING METHODS

Güzin Bayraksan
Ohio State University, USA

Tito Homem-de-Mello
University Adolfo Ibáñez, Chile

From May 9th to May 13th, 2016

MINI COURSES > EQUILIBRIUM ROUTING UNDER UNCERTAINTY

Roberto Cominetti, University Adolfo Ibáñez, Chile

From May 16th to May 20th, 2016

MINI COURSES > STOCHASTIC CONVEX OPTIMIZATION METHODS IN MACHINE LEARNING

Mark Schmidt, University of British Columbia

From May 16th to May 20th, 2016

SVAN 2016 CALENDAR

Add to your calendar app

Today May 2016 -

SVAN

Month Agend	Print Week				ay 2016 🔻	loday
Sat	Fri	Thu	Wed	Tue	Mon	Sun
5	6	5	4	3	2	May 1
		1:30pm SVAN Bas		1:30pm SVAN Bas		
3	13	12	11	10	9	8
a	10:30am MC1: Scena 1:30pm MC1: Scena 3:30pm MC1: Scena		10:30am MC1: Scena 1:30pm MC1: Scena 3:30pm MC1: Scena	1:30pm SVAN Bas	1:30pm MC1: Scena 3:30pm MC1: Scena	
)	20	19	18	17	16	15
ti	9am MC3: Stochasti	9am MC3: Stochasti	9am MC3: Stochasti	9am MC3: Stochasti	10:30am MC3: Stoch	
H	10:30am MC3: Stoch			1:30pm SVAN Bas 3:30pm MC2: Equilib		
7	27	26	25	24	23	22
		1:30pm SVAN Bas		1:30pm SVAN Bas		

CPrint Week Month Acondo

Multistage stochastic linear programs - T-SLP

NESTED FORMULATION

$$\min_{\substack{A_1x_1=b_1\\x_1\geq 0}} c_1^\top x_1 + \mathbb{E}\left[\min_{\substack{B_2x_1+A_2x_2=b_2\\x_2\geq 0}} c_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}[\min_{\substack{B_Tx_{T-1}+A_Tx_T=b_T\\x_T\geq 0}} c_T^\top x_T]\right]\right]$$

▶ Some elements of the data $\xi = (c_t, B_t, A_t, b_t)$ depend on uncertainties.

Dynamic Programming Formulation

▶ Stage t = T

$$Q_T(x_{T-1}, \xi_{[T]}) := \min_{\substack{B_T x_{T-1} + A_T x_T = b_T \\ x_T \ge 0}} c_T^\top x_T$$

 \blacktriangleright At stages $t=2,\ldots,T-1$

$$Q_t(x_{t-1}, \xi_{[t]}) := \min_{\substack{B_t x_{t-1} + A_t x_t = b_t \\ x_t > 0}} c_t^\top x_t + \mathcal{Q}_{t+1}(x_t, \xi_{[t]})$$

▶ Stage t = 1

$$\min_{\substack{A_1x_1=b_1\\x_1\geq 0}} c_1^\top x_1 + \mathcal{Q}_2(x_1,\xi_{[1]})$$

RECOURSE FUNCTION

$$Q_{t+1}(x_t, \xi_{[t]}) := \mathbb{E}_{|\xi_{[t]}} [Q_{t+1}(x_t, \xi_{[t+1]})]$$

SVAN 2016

DYNAMIC PROGRAMMING FORMULATION

Scenario tree

• Stage t = T

$$Q_T(x_{T-1}, \xi_{[T]}^\iota) := \min_{\substack{B_T^\iota x_{T-1}^{a(\iota)} + A_T^\iota x_T = b_T^\iota \\ x_T \geq 0}} c_T^{\iota}^{\top} x_T$$

$$\text{At stages } t = 2, \dots, T - 1$$

$$\underline{Q_t}(x_{t-1}, \xi_{[t]}^t) := \min_{\substack{B_t^t x_{t-1}^{a(t)} + A_t^t x_t = b_t^t \\ x_t \ge 0}} c_t^{\iota^\top} x_t + \check{\mathcal{Q}}_{t+1}(x_t, \xi_{[t]}^t)$$

▶ Stage t = 1

$$\min_{\substack{A_1x_1=b_1\\x_1\geq 0}} c_1^\top x_1 + \check{\mathcal{Q}}_2(x_2,\xi_{[1]})$$

CUTTING-PLANE MODEL

$$\check{Q}_{t+1}(x_t, \xi_{[t]}^{\iota}) := \sum_{j \in C_{\iota}} p^{(j)} \left[\underline{Q_{t+1}}(x_t, \xi_{[t+1]}^{j}) \right]$$

SVAN 2016

CUTTING-PLANE APPROXIMATION

ightharpoonup Stage t=T

$$Q_T(x_{T-1}^k, \xi_{[T]}) := \min_{\substack{B_T x_{T-1}^k + A_T x_T = b_T \\ x_T \ge 0}} c_T^\top x_T$$

 \blacktriangleright At stages $t=2,\ldots,T-1$

$$\underline{Q_t}(x_{t-1}^k, \xi_{[t]}) := \begin{cases} \min_{\substack{x_t \ge 0, r_{t+1} \\ \text{s.t.}}} & c_t^\top x_t + r_{t+1} \\ \text{s.t.} & B_t x_{t-1}^k + A_t x_t = b_t \\ & r_{t+1} \ge \alpha_{t+1}^j + \beta_{t+1}^j x_t & j = 1, \dots, k \end{cases}$$

▶ Stage t = 1

$$\underline{\boldsymbol{z}}^k := \left\{ \begin{array}{ll} \min\limits_{\substack{x_1 \geq 0, r_2 \\ \text{s.t.}}} & c_1^\top x_1 + r_2 \\ \text{s.t.} & A_1 x_1 = b_1 \\ & r_2 \geq \alpha_2^j + \beta_2^j x_1 \quad j = 1, \dots, k \end{array} \right.$$

Computing cuts

 \blacktriangleright At stages $t=2,\ldots,T-1$

$$\underline{Q_t}(x_{t-1}^k, \xi_{[t]}) := \begin{cases} \min_{x_t \ge 0, r_{t+1}} & {c_t}^\top x_t + r_{t+1} \\ \text{s.t.} & B_t x_{t-1}^k + A_t x_t = b_t \\ & r_{t+1} \ge \alpha_{t+1}^j + \beta_{t+1}^j x_t & j = 1, \dots, k \end{cases} \frac{(\pi_t)}{(\rho_t^j)}$$

ightharpoonup Cuts (t=T)

$$\alpha_T^k := \mathbb{E}_{|\xi_{[T-1]}}[b_T^{\top} \pi_T^k] \quad \text{and} \quad \beta_T^k := -\mathbb{E}_{|\xi_{[T-1]}}[B_T^{\top} \pi_T^k]$$

▶ Cuts (t = T - 1, ..., 2)

$$\alpha_t^k := \mathbb{E}_{|\xi_{[t-1]}}[b_t^{\top} \pi_t^k + \sum_{i=1}^k \alpha_{t+1}^j \rho_t^j] \quad \text{and} \quad \beta_t^k := -\mathbb{E}_{|\xi_{[t-1]}}[B_t^{\top} \pi_t^k]$$

$$\check{Q}_{t+1}(x_t, \xi_{[t]}^{\iota}) = \sum_{j \in C_{\iota}} p^{(j)} \left[\underline{Q_{t+1}}(x_t, \xi_{[t+1]}^{j}) \right] \\
= \max_{j=1,\dots,k} \left\{ \alpha_{t+1}^{k} + \beta_{t+1}^{k} \right\}_{-}^{\top} x_t \right\}$$

ALGORITHM - NESTED DECOMPOSITION

STAGES t = 2, ..., T - 1

$$\underline{Q_t}(x_{t-1}^k, \xi_{[t]}) := \begin{cases} \min_{x_t \ge 0, r_{t+1}} & {c_t}^\top x_t + r_{t+1} \\ \text{s.t.} & B_t x_{t-1}^k + A_t x_t = b_t \\ & r_{t+1} \ge \alpha_{t+1}^j + \beta_{t+1}^j x_t & j = 1, \dots, k & (\rho_t^j) \end{cases}$$

- ▶ Step 0: initialization. Define k=1 and add the constraint $r_t=0$ in all LPs $\underline{Q_t}$, $t=2,\ldots,T-1$. Compute \underline{z}^1 and let its solution be x_1^1 .
- ▶ Step 1: forward. For t=2,...,T, solve the LP $\underline{Q_t}$ to obtain $x_t^k := x_t^k(\xi_{[t]})$. Define $\bar{z}^k := \mathbb{E}[\sum_{t=1}^T c_t^\top x_t^k]$.
- ▶ Step 2: backward. Compute α_T^k and β_T^k . Set t = T. Loop:
 - ▶ While t > 2
 - $ightharpoonup t \leftarrow t-1$
 - ▶ solve the LP $\underline{Q_t}(x_{t-1}^k, \xi_{[t]})$
 - ▶ Compute α_t^k and β_t^k

Compute \underline{z}^k and let its solution be x_1^{k+1} .

▶ Step 3: Stopping test. If $\bar{z}^k - \underline{z}^k \le \epsilon$, stop. Otherwise set $k \leftarrow k+1$ and go back to Step 1.

Convergence analysis

Assumptions

- ▶ The set of nodes Ω_t has finitely many elements, $t = 1, \ldots, T$
- ▶ the problem has recourse relatively complete (for simplicity, only)
- ▶ the feasible set, in each stage t = 1, ..., T, is compact

LEMMA

$$\check{\mathcal{Q}}_{t}^{k}(x_{t-1}, \xi_{[t-1]}) \leq \mathcal{Q}_{t}(x_{t-1}, \xi_{[t-1]}) \quad \forall \ x_{t-1} \ \ and \ \ \forall t = 2, \dots, T$$

THEOREM

The Nested Decomposition converges finitely to an optimal solution of the considered T-SLP.

Block separable recourse

If the T-SLP problem has block separable recourse, then a more efficient algorithm might be employed (this will, of course, depend on the application).

DEFINITION

A T-SLP has block separable recourse if for all stage t = 1, ..., T and all ξ , the decision vectors, x_t , can be written as $x_t = (w_t, y_t)$ where w_t represents aggregate level decisions and y_t represents detailed level (local) decisions. The constraints also follow these partitions:

- ▶ The stage t cost is $c_t^\top x_t = c_t^{w\top} w_t + c_t^{y\top} y_t$
- ▶ The matrices in the coupling constraint $B_t x_{t-1} + A_t x_t = b_t$ are given by

$$B_t = \begin{pmatrix} T_t & 0 \\ S_t & 0 \end{pmatrix} \quad A_t = \begin{pmatrix} W_t & 0 \\ 0 & D_t \end{pmatrix} \quad b_t = \begin{pmatrix} h_t \\ d_t \end{pmatrix}$$

Block separable recourse

$$x_t = (w_t, y_t)$$
 $c_t^\top x_t = c_t^{w \top} w_t + c_t^{y \top} y_t$

In this manner

$$B_t x_{t-1} + A_t x_t = b_t \quad \Longleftrightarrow \quad \begin{cases} T_t w_{t-1} + W_t w_t = h_t \\ S_t w_{t-1} + D_t y_t = d_t \end{cases}$$

and the cost-to-go function

$$Q_t(x_{t-1}, \xi_{[t]}) := \min_{\substack{B_t x_{t-1} + A_t x_t = b_t \\ x_t \ge 0}} c_t^\top x_t + Q_{t+1}(x_t, \xi_{[t]})$$

becomes the sum of two quantities

$$Q_t(x_{t-1}, \xi_{[t]}) = Q_t^w(w_{t-1}, \xi_{[t]}) + Q_t^y(w_{t-1}, \xi_{[t]})$$

with

$$Q_t^w(w_{t-1}, \xi_{[t]}) := \min_{\substack{T_t w_{t-1} + W_t w_t = h_t \\ w_t \ge 0}} c_t^{w^\top} w_t + Q_{t+1}(w_t, \xi_{[t]})$$

and

$$Q_t^y(w_{t-1}, \xi_{[t]}) := \min_{\substack{S_t w_{t-1} + D_t y_t = d_t \\ y_t \geq 0}} c_t^{y^\top} y_t$$

SVAN 2016

《□》《圖》《意》《意》 毫 例

BLOCK SEPARABLE RECOURSE

The great advantage of block separability is that we need not consider nesting among the detailed level decisions. In this way, the w variables can all be pulled together into a first stage of aggregate level decisions.

$$\min_{x_1,w} c_1^{\top} x_1 + \mathbb{E}[c_2^{w} w_2 + \dots + c_T^{w} w_T] + \mathbb{E}[\sum_{t=2}^T Q_t^y(w_{t-1}, \xi_{[t]})]$$
s.t.
$$A_1 x_1 = b_1$$

$$T_t w_{t-1} + W_t w_t = h_t, \quad t = 2, \dots, T \quad a.s.$$

$$x_1, w \ge 0$$

with

$$Q_t^y(w_{t-1}, \xi_{[t]}) := \min_{\substack{S_t w_{t-1} + D_t y_t = d_t \\ y_t > 0}} c_t^{y^\top} y_t$$

BLOCK SEPARABLE RECOURSE

With finitely many scenarios

$$\min_{z \in Z} \ \bar{c}^{\top} z + \mathcal{Q}(z)$$

with Z a polyhedral set, z containing all the node decisions w_t^t and x_1 and

$$Q(z) = \sum_{t=2}^{T} \sum_{\iota \in \Omega_t} p^{(\iota)} Q_t^y(z, \xi^{\iota})$$

$$Q_t^y(z,\xi^{\iota}) = \min_{\substack{S_t^{\iota}w_{t-1}^{a(\iota)} + D_t^{\iota}y_t = d_t^{\iota} \\ y_t > 0}} c_t^{y,\iota\top} y_t$$

This is a convex programming problem and a subgradient of Q is computable!

BLOCK SEPARABLE RECOURSE

CUTTING-PLANE METHOD

THE PROBLEM

$$\min_{z \in Z} \ f(z), \quad \text{with} \quad f(z) = \bar{\boldsymbol{c}}^{\top} \boldsymbol{z} + \mathcal{Q}(z)$$

ORACLE

$$z^{\ell} \longrightarrow \boxed{\mathbf{oracle}} \longrightarrow \left[\begin{array}{c} f(z^{\ell}) = \bar{c}^{\top} z^{\ell} + \mathcal{Q}(z^{\ell}) \\ g^{\ell} \in \partial f(z^{\ell}) \end{array} \right.$$

CUTTING-PLANE MODEL

$$\check{f}_{\ell}(z) := \max_{j=1,\dots,\ell} \{ f(z^j) + \langle g^j, x - x^j \rangle \}$$

NEXT ITERATE

$$z^{\ell+1} \in \arg\min_{z \in Z} \check{f}_{\ell}(z)$$

CUTTING-PLANE ALGORITHM

- ▶ Step 0: inicialization. Choose tol > 0, $z^0 \in Z$ and call the oracle to compute $f(z^0)$ and $g^0 \in f(z^0)$. Set $f_0^{\text{up}} = f(z^0)$ and $\ell = 0$
- ▶ Step 1: next iterate. Compute

$$z^{\ell+1} \in \arg\min_{z \in Z} \check{f}_{\ell}(z)$$

and let
$$f_{\ell}^{\text{low}} = \check{f}_{\ell}(z^{\ell+1})$$
.

- ▶ Step 2: stopping test. Define $\Delta_{\ell} = f_{\ell}^{up} f_{\ell}^{low}$. If $\Delta_{\ell} \leq tol$, stop
- ▶ Step 3: oracle call. Compute $f(z^{\ell+1})$ and $g^{\ell+1} \in f(z^{\ell+1})$ and set $f_{\ell+1}^{\text{up}} = \min\{f_{\ell}^{\text{up}}, f(z^{\ell+1})\}.$
- ▶ Step 4: loop. Set $\ell = \ell + 1$ and go back to Step 1.

VAN 2016

Convergence analysis

THEOREM

Let tol > 0 be given and suppose that Z is compact. Then the cutting-plane algorithm determines $\Delta_{\ell} \leq$ tol in finitely many iterations. Furthermore, the point \bar{z} yielding $f_{\ell}^{\mathrm{up}} = f(\bar{z})$ is a tol-solution to the block separable T-SLP.

CONVERGENCE ANALYSIS

THEOREM

Let tol > 0 be given and suppose that Z is compact. Then the cutting-plane algorithm determines $\Delta_{\ell} \leq$ tol in finitely many iterations. Furthermore, the point \bar{z} yielding $f_{\ell}^{\mathrm{up}} = f(\bar{z})$ is a tol-solution to the block separable T-SLP.

In fact, the result also holds if:

- ightharpoonup tol = 0 (finite convergence)
- \triangleright z is a mixed-integer variable (mixed-integer stochastic linear programming)!