
Multistage stochastic linear programming problems

Block separable recourse

Welington de Oliveira

BAS Lecture 16, May 3, 2016, IMPA

News

Nested Decomposition - convergence analysis

Block separable recourse

News

News

News

Exercises

Second list of exercises is available!

Deadline: 02/06/2016

News

From May 9th to May 13th, 2016

News

News

News

Nested Decomposition - convergence analysis

Multistage stochastic linear programs - T-SLP

Nested formulation

min
A1x1=b1
x1≥0

c
>
1 x1 + E

 min
B2x1+A2x2=b2

x2≥0

c
>
2 x2 + E

· · · + E[min
BT xT−1+AT xT=bT

xT≥0

c
>
T xT]




I Some elements of the data ξ = (ct, Bt, At, bt) depend on uncertainties.

Nested Decomposition - convergence analysis

Dynamic programming formulation

I Stage t = T

QT (xT−1, ξ[T]) := min
BT xT−1+AT xT=bT

xT≥0

c>T xT

I At stages t = 2, . . . , T − 1

Qt(xt−1, ξ[t]) := min
Btxt−1+Atxt=bt

xt≥0

c>t xt +Qt+1(xt, ξ[t])

I Stage t = 1
min

A1x1=b1
x1≥0

c>1 x1 +Q2(x1, ξ[1])

Recourse function

Qt+1(xt, ξ[t]) := E|ξ[t]
[
Qt+1(xt, ξ[t+1])

]

Nested Decomposition - convergence analysis

Dynamic programming formulation
Scenario tree

I Stage t = T

QT (xT−1, ξ
ι
[T]) := min

Bι
T
x
a(ι)
T−1

+Aι
T
xT=bι

T
xT≥0

cιT
>xT

I At stages t = 2, . . . , T − 1

Qt(xt−1, ξ
ι
[t]) := min

Bιtx
a(ι)
t−1+Aιtxt=b

ι
t

xt≥0

cιt
>xt + Q̌t+1(xt, ξ

ι
[t])

I Stage t = 1
min

A1x1=b1
x1≥0

c>1 x1 + Q̌2(x2, ξ[1])

Cutting-plane model

Q̌t+1(xt, ξ
ι
[t]) :=

∑
j∈Cι

p(j)
[
Qt+1(xt, ξ

j
[t+1])

]

Nested Decomposition - convergence analysis

Cutting-plane approximation

I Stage t = T

QT (xkT−1, ξ[T]) := min
BT x

k
T−1

+AT xT=bT
xT≥0

cT
>xT

I At stages t = 2, . . . , T − 1

Qt(x
k
t−1, ξ[t]) :=


min

xt≥0,rt+1

ct
>xt + rt+1

s.t. Btx
k
t−1 +Atxt = bt

rt+1 ≥ αjt+1 + βjt+1xt j = 1, . . . , k

I Stage t = 1

zk :=


min

x1≥0,r2
c>1 x1 + r2

s.t. A1x1 = b1
r2 ≥ αj2 + βj2x1 j = 1, . . . , k

Nested Decomposition - convergence analysis

Computing cuts

I At stages t = 2, . . . , T − 1

Qt(x
k
t−1, ξ[t]) :=


min

xt≥0,rt+1

ct
>xt + rt+1

s.t. Btx
k
t−1 +Atxt = bt (πt)

rt+1 ≥ αjt+1 + βjt+1xt j = 1, . . . , k (ρjt)

I Cuts (t = T)

αkT := E|ξ[T−1]
[b>T π

k
T] and βkT := −E|ξ[T−1][B

>
T π

k
T]

I Cuts (t = T − 1, . . . , 2)

αkt := E|ξ[t−1]
[b>t π

k
t +

k∑
j=1

αjt+1ρ
j
t] and βkt := −E|ξ[t−1]

[B>t π
k
t]

Q̌t+1(xt, ξ
ι
[t]) =

∑
j∈Cι p

(j)
[
Qt+1(xt, ξ

j
[t+1])

]
= maxj=1,...,k{αkt+1 + βkt+1

>
xt}

Nested Decomposition - convergence analysis

Algorithm - Nested decomposition
stages t = 2, . . . , T − 1

Qt(x
k
t−1, ξ[t]) :=


min

xt≥0,rt+1

ct
>xt + rt+1

s.t. Btx
k
t−1 + Atxt = bt (πt)

rt+1 ≥ αjt+1 + βjt+1xt j = 1, . . . , k (ρjt)

I Step 0: initialization. Define k = 1 and add the constraint rt = 0 in all LPs Qt,

t = 2, . . . , T − 1. Compute z1 and let its solution be x11.

I Step 1: forward. For t=2,. . . ,T, solve the LP Qt to obtain xkt := xkt (ξ[t]). Define

z̄k := E[
∑T
t=1 c

>
t x

k
t].

I Step 2: backward. Compute αkT and βkT . Set t = T . Loop:

I While t > 2
I t← t− 1
I solve the LP Qt(xkt−1, ξ[t])
I Compute αkt and βkt

Compute zk and let its solution be xk+1
1 .

I Step 3: Stopping test. If z̄k − zk ≤ ε, stop. Otherwise set k ← k + 1 and
go back to Step 1.

Nested Decomposition - convergence analysis

Convergence analysis

Assumptions

I The set of nodes Ωt has finitely many elements, t = 1, . . . , T

I the problem has recourse relatively complete (for simplicity, only)

I the feasible set, in each stage t = 1, . . . , T , is compact

Lemma
Q̌kt (xt−1, ξ[t−1]) ≤ Qt(xt−1, ξ[t−1]) ∀ xt−1 and ∀t = 2, . . . , T

Theorem
The Nested Decomposition converges finitely to an optimal solution of the
considered T-SLP.

Block separable recourse

Block separable recourse

If the T-SLP problem has block separable recourse, then a more efficient
algorithm might be employed (this will, of course, depend on the
application).

Definition
A T-SLP has block separable recourse if for all stage t = 1, . . . , T and all ξ,
the decision vectors, xt, can be written as xt = (wt, yt) where wt represents
aggregate level decisions and yt represents detailed level (local) decisions.
The constraints also follow these partitions:

I The stage t cost is c>t xt = cwt
>wt + cyt

>yt

I The matrices in the coupling constraint Btxt−1 +Atxt = bt are given
by

Bt =

(
Tt 0
St 0

)
At =

(
Wt 0
0 Dt

)
bt =

(
ht
dt

)

Block separable recourse

Block separable recourse

xt = (wt, yt) c
>
t xt = c

w
t
>
wt + c

y
t
>
yt

In this manner

Btxt−1 +Atxt = bt ⇐⇒
{
Ttwt−1 +Wtwt = ht
Stwt−1 +Dtyt = dt

and the cost-to-go function

Qt(xt−1, ξ[t]) := min
Btxt−1+Atxt=bt

xt≥0

c>t xt +Qt+1(xt, ξ[t])

becomes the sum of two quantities

Qt(xt−1, ξ[t]) = Qwt (wt−1, ξ[t]) +Qyt (wt−1, ξ[t])

with
Qwt (wt−1, ξ[t]) := min

Ttwt−1+Wtwt=ht
wt≥0

cwt
>wt +Qt+1(wt, ξ[t])

and
Qyt (wt−1, ξ[t]) := min

Stwt−1+Dtyt=dt
yt≥0

cyt
>yt

Block separable recourse

Block separable recourse

The great advantage of block separability is that we need not consider
nesting among the detailed level decisions. In this way, the w variables can
all be pulled together into a first stage of aggregate level decisions.

minx1,w c>1 x1 + E[cw2
>w2 + · · ·+ cwT

>wT] + E[
∑T
t=2 Q

y
t (wt−1, ξ[t])]

s.t. A1x1 = b1
Ttwt−1 +Wtwt = ht, t = 2, . . . , T a.s.
x1, w ≥ 0

with
Qyt (wt−1, ξ[t]) := min

Stwt−1+Dtyt=dt
yt≥0

cyt
>yt

Block separable recourse

Block separable recourse

With finitely many scenarios

min
z∈Z

c̄>z +Q(z)

with Z a polyhedral set, z containing all the node decisions wιt and x1 and

Q(z) =

T∑
t=2

∑
ι∈Ωt

p(ι)Qyt (z, ξι)

Qyt (z, ξι) = min
Sιtw

a(ι)
t−1+Dιtyt=d

ι
t

yt≥0

cy,ιt
>yt

This is a convex programming problem and a subgradient of Q is
computable!

Block separable recourse

Block separable recourse
Cutting-plane method

The problem

min
z∈Z

f(z), with f(z) = c̄>z +Q(z)

Oracle

z` −→
�� ��oracle −→

[
f(z`) = c̄>z` +Q(z`)

g` ∈ ∂f(z`)

Cutting-plane model

f̌`(z) := max
j=1,...,`

{f(zj) + 〈gj , x− xj〉}

Next iterate

z`+1 ∈ arg min
z∈Z

f̌`(z)

Block separable recourse

Cutting-plane algorithm

I Step 0: inicialization. Choose tol > 0, z0 ∈ Z and call the oracle to
compute f(z0) and g0 ∈ f(z0). Set fup

0 = f(z0) and ` = 0

I Step 1: next iterate. Compute

z`+1 ∈ arg min
z∈Z

f̌`(z)

and let f low
` = f̌`(z

`+1).

I Step 2: stopping test. Define ∆` = fup
` − f

low
` . If ∆` ≤ tol, stop

I Step 3: oracle call. Compute f(z`+1) and g`+1 ∈ f(z`+1) and set
fup
`+1 = min{fup

` , f(z`+1)}.

I Step 4: loop. Set ` = `+ 1 and go back to Step 1.

Block separable recourse

Convergence analysis

Theorem
Let tol > 0 be given and suppose that Z is compact. Then the cutting-plane
algorithm determines ∆` ≤ tol in finitely many iterations. Furthermore, the
point z̄ yielding fup

` = f(z̄) is a tol-solution to the block separable T-SLP.

In fact, the result also holds if:

I tol = 0 (finite convergence)

I z is a mixed-integer variable (mixed-integer stochastic linear
programming)!

Block separable recourse

Convergence analysis

Theorem
Let tol > 0 be given and suppose that Z is compact. Then the cutting-plane
algorithm determines ∆` ≤ tol in finitely many iterations. Furthermore, the
point z̄ yielding fup

` = f(z̄) is a tol-solution to the block separable T-SLP.

In fact, the result also holds if:

I tol = 0 (finite convergence)

I z is a mixed-integer variable (mixed-integer stochastic linear
programming)!

	News
	Nested Decomposition - convergence analysis
	Block separable recourse

