MULTISTAGE STOCHASTIC LINEAR PROGRAMMING PROBLEMS

BLOCK SEPARABLE RECOURSE

Welington de Oliveira

BAS Lecture 16, May 3, 2016, IMPA
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Set YouTube resolution to
480p

for best viewing
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Distribution BAS - Exam 1

Munber of students

HEAM 68 100
Grades
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EXERCISES

Second list of exercises is available!

Deadline: 02/06/2016
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MINI COURSES > SCENARIO GENERATION AND SAMPLING METHODS

Guzin Bayraksan Tito Homem-de-Mello

Ohio State University, USA University Adolfo Ibafiez, Chile

From May 9th to May 13th, 2016
Svan 2016



Roberto Cominetti, University Adolfo Ibafiez, Chile

From May 16th to May 20th, 2016
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MINI COURSES > STOCHASTIC CONVEX OPTIMIZATION METHODS IN
MACHINE LEARNING

Mark Schmidt, University of British Columbia
From May 16th to May 20th, 2016
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NESTED DECOMPOSITION - CONVERGENCE ANALYSIS

MULTISTAGE STOCHASTIC LINEAR PROGRAMS - T-SLP

NESTED FORMULATION

min crwl +E min c;—:cz +E|---+E| min c}—xT]
Ajzy=by Baz+Agzp=bs Braep_1+Apzp=bp
x1>0 x9>0 x>0

> Some elements of the data & = (¢, By, A, bt) depend on uncertainties.
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NESTED DECOMPOSITION - CONVERGENCE ANALYSIS
DYNAMIC PROGRAMMING FORMULATION
> Staget =T

. T
T\TT-1 = min crxT
Qr( &) U
zp >0

» At stagest=2,...,T—1

- — 1 T
Qi(we—1,&py) tht,ﬂlgtmt:bt ¢t Tr + Qey1(@e, &)
xy >0
> Staget =1
min clT.rl + Qa(x1,€))
Ajx1=b1
x>0

RECOURSE FUNCTION

Quv1(we, &) = Ejgy,y [Qear (w4, Epeny)]

}VAN 2016



NESTED DECOMPOSITION - CONVERGENCE ANALYSIS

DYNAMIC PROGRAMMING FORMULATION
SCENARIO TREE

> Staget =T
Qr(zr-1,¢[r)) = min ¢ ar

Bhatl) 4 AL er=by,
>0

> At stagest=2,..., 7T —1

%(mt—lzgft]) = min Ci—rﬂct + QHl(xt’g[Lt])
Biag) + Aje=b
xy >0
> Staget =1
min ¢ x1 + Qs (w2, &)
Ajx1=b1
21>0

CUTTING-PLANE MODEL

Qt+1($t,fft]) = Z p(j> [@(wtf[jtﬂ])]

jeC,
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NESTED DECOMPOSITION - CONVERGENCE ANALYSIS
CUTTING-PLANE APPROXIMATION
> Staget =T

k . T
Qr(xr_1,&m)) = min cr xT
Brazk | +Apzp=br
zp >0

» At stagest=2,...,T—1

min ctTast + ri41
1 2>0,7441

k
Qi(wi1,&) = s.t. Beaf_, + Avze = by
Tl 2> 0g g+ Bl j=1,...k

> Staget =1

. T
min C1 X1+ 72
k 120,72

s.t. Az =by
ro>ay+px j=1,...,k Svan 2016
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NESTED DECOMPOSITION - CONVERGENCE ANALYSIS

COMPUTING CUTS
> At stagest=2,..., T —1
min CtTJ?t + Tt+4+1
b zt>0,m4 41
@(mt—h&[t]) = s.t. Bixf 4 + Ay = by (m)
Tt > iy + B j=1...k (p7)

> Cuts (t=1T)

ok = Eleir_y [brnk] and B = —]E|5[T_1][B;7r§]

» Cuts (t=T-1,...,2)

k
k T _k i k T _k
Qp 1= Elﬁ[t_l] [b; +Zai+1pg] and By = _Els[t_l] [B; 7]
j=1

Qt+1($t7€ft]) = Ejch P(j) |:Qt+1(xt’£[jt+1])]

1
maxj—1,. x{afi + BF @) Svan 2016



NESTED DECOMPOSITION - CONVERGENCE ANALYSIS

ALGORITHM - NESTED DECOMPOSITION

STAGES t = 2, ..., T — 1
min (:,,TJI;,, + T
. @y >0.rp 1
&(zt—l’g[t]) = S.T. B,,.'I;i‘:;] + Arzy = by (m¢)
o1 2oy F B e G=1,...k  (p])

> Step 0: initialization. Define k = 1 and add the constraint 4 = 0 in all LPs Qt,
t=2,...,T —1. Compute gl and let its solution be z%

> Step 1: forward. For t=2,...,T, solve the LP Q¢ to obtain :v]tc = z’:(f[t]) Define
sk T T, .k
28 =B e 2]

> Step 2: backward. Compute a’% and ﬁ}fm Set t = T. Loop:
> While t > 2

t—t—1

solve the LP Qq(xf_, &)

Compute af and Bf

v VvYy

Compute gk and let its solution be x’f"’l.

> Step 3: Stopping test. If zk 7516 < ¢, stop. Otherwise set k < k + 1 and
go back to Step 1.
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NESTED DECOMPOSITION - CONVERGENCE ANALYSIS

CONVERGENCE ANALYSIS

ASSUMPTIONS

> The set of nodes 2 has finitely many elements, t = 1,...,T
> the problem has recourse relatively complete (for simplicity, only)
> the feasible set, in each stage t = 1,...,7T, is compact

LEMMA
Qf(xtfl,f[t_l]) S Qt(ittfl,f[t_l]) \4 Tt—1 and YVt = 2, e ,T

THEOREM

The Nested Decomposition converges finitely to an optimal solution of the
considered T-SLP.
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BLOCK SEPARABLE RECOURSE

BLOCK SEPARABLE RECOURSE

If the T-SLP problem has block separable recourse, then a more efficient
algorithm might be employed (this will, of course, depend on the
application).
DEFINITION
A T-SLP has block separable recourse if for all stage t = 1,...,T and all £,
the decision vectors, ¢, can be written as x+ = (w¢, y:) where w; represents
aggregate level decisions and y; represents detailed level (local) decisions.
The constraints also follow these partitions:

» The stage ¢ cost is ¢f z; = ¢’ Tw; 4+ ¢ Ty,

» The matrices in the coupling constraint Bixi—1 + Azt = by are given

by

T, 0 (W, 0 (e
p= (o) 4= (7 5) = (a)

Svan 2016



BLOCK SEPARABLE RECOURSE

BLOCK SEPARABLE RECOURSE

T wT T
zy = (we, yt) ¢, Ty = ¢ wi + cf Yt

In this manner

Tiwe—1 + Wiwe = hy

By Ay = by =
tTe—1 + ATt t { Siwe—r + Deye = dy

and the cost-to-go function

Qt(xt—1,&y) = Btzt_fl:lf'ixgltzt:bt of 1 + Qet1(we, Epyp)
24>0

becomes the sum of two quantities

Qu(re—1,€4) = Q1 (wi—1, &) + QF (wi—1, &)

with
w . w T
Qt (wt71 ’ {[1]) = waf—lr‘r‘rl‘l}‘I}flUf:ht e wet Qt+1 (w“ §[t])
i1+ Wowe
and
QY (we—1,&) = min Ty

Stwi_1+Dryr=d¢
y£ =0

}VAN 2016



BLOCK SEPARABLE RECOURSE

BLOCK SEPARABLE RECOURSE

The great advantage of block separability is that we need not consider
nesting among the detailed level decisions. In this way, the w variables can
all be pulled together into a first stage of aggregate level decisions.

ming, . ¢ 1+ E[CEUTU& 4+ 4 C’”TUTwT] + E[ZtTZQ QY (we—1,&p)]

s.t. Aizi =br
Tt’wt71 —I—Wtwt th, tIQ,...,T a.s.
z1,w >0
with
Yy — ; yT
QY (wi—1,&) : R I B
Yyt >0

}VAN 2016



BLOCK SEPARABLE RECOURSE

BLOCK SEPARABLE RECOURSE

With finitely many scenarios

min ¢' z + Q(z)
z€Z

with Z a polyhedral set, z containing all the node decisions w; and z1 and

Q(z) = pQY(z¢)

t=2 1EQ

QY(z,€") = min Ty

Siwy )+ Diye=d;

y¢ >0

This is a convex programming problem and a subgradient of Q is
computable!
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BLOCK SEPARABLE RECOURSE

BLOCK SEPARABLE RECOURSE
CUTTING-PLANE METHOD

THE PROBLEM

Héiél f(2), with f(z)=¢ z+ Q(z)

ORACLE

o _ Tt ¢
2 — — [ ;”e(ze)a;((;e)z Q=)

CUTTING-PLANE MODEL

fo(z) = max {f(') + (g’ 2 — ")}

NEXT ITERATE

41 .
# Carg e fe(2) }VAN 2016



BLOCK SEPARABLE RECOURSE

CUTTING-PLANE ALGORITHM

» Step 0: inicialization. Choose tol > 0, z° € Z and call the oracle to
compute f(z°) and ¢° € f(2°). Set f3® = f(2°) and £ =0

» Step 1: next iterate. Compute
41 .
z7 € argmin fe(2)
and let fi°% = fo(2¢F).
» Step 2: stopping test. Define A, = f;® — f,°. If A, < tol, stop

» Step 3: oracle call. Compute f(zt!) and ¢**! € f(2**') and set
fify = min{f;®, f(z").

> Step 4: loop. Set £ =/ + 1 and go back to Step 1.
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BLOCK SEPARABLE RECOURSE

CONVERGENCE ANALYSIS

THEOREM

Let tol > 0 be given and suppose that Z is compact. Then the cutting-plane
algorithm determines Ay < tol in finitely many iterations. Furthermore, the
point z yielding f,® = f(Z) is a tol-solution to the block separable T-SLP.

}VAN 2016



BLOCK SEPARABLE RECOURSE

CONVERGENCE ANALYSIS

THEOREM

Let tol > 0 be given and suppose that Z is compact. Then the cutting-plane
algorithm determines Ay < tol in finitely many iterations. Furthermore, the
point z yielding f,® = f(Z) is a tol-solution to the block separable T-SLP.

In fact, the result also holds if:

> tol = 0 (finite convergence)

> z is a mixed-integer variable (mixed-integer stochastic linear
programming)!

}VAN 2016
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