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Formulations



Formulations

Nested formulation

I ξ = (ξ1, . . . , ξT ) is the stochastic process

I ft : <nt ×<dt → <̄, t = 1, . . . , T , are continuous functions

I xt ∈ <nt , t = 1, . . . , T , are the decision variables

I Xt : <nt−1 ×<dt ⇒ <nt ,t = 1, . . . , T , are measurable, closed valued
multifunctions

inf
x1∈X1

f1(x1) + E
[

inf
x2∈X2(x1,ξ2)

f2(x2, ξ2) + E
[
· · · + E[ inf

xT∈X(xT−1,ξT )
fT (xT , ξT )]

]]
.
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Formulations

Nested formulation

I ξ = (ξ1, . . . , ξT ) is the stochastic process

I ft : <nt ×<dt → <̄, t = 1, . . . , T , are continuous functions

I xt ∈ <nt , t = 1, . . . , T , are the decision variables

I Xt : <nt−1 ×<dt ⇒ <nt ,t = 1, . . . , T , are measurable, closed valued
multifunctions

inf
x1∈X1

f1(x1)+E|ξ1

[
inf

x2∈X2(x1,ξ2)
f2(x2, ξ2) + E|ξ[2]

[
· · · + E|ξ[T−1]

[ inf
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fT (xT , ξT )]

]]
.



Formulations

Dynamic programming formulation

I Stage t = T

QT (xT−1, ξ[T ]) := inf
xT∈XT (xT−1,ξT )

fT (xT , ξT )

I At stages t = 2, . . . , T − 1

Qt(xt−1, ξ[t]) := inf
xt∈Xt(xt−1,ξt)

ft(xt, ξt) + E|ξ[t]
[
Qt+1(xt, ξ[t+1])

]
I Stage t = 1

inf
x1∈X1

f1(x1) + E [Q2(x1, ξ2)]

Recourse function

Qt+1(xt, ξ[t]) := E|ξ[t]
[
Qt+1(xt, ξ[t+1])

]
Cost-to-go function

Qt(xt−1, ξ[t]) := inf
xt∈Xt(xt−1,ξt)

ft(xt, ξt) +Qt+1(xt, ξ[t])



Formulations

Dynamic programming formulation

If the stochastic process is stagewise independent the problem becomes less
“heavy”

Recourse function

Qt+1(xt) := E [Qt+1(xt, ξt+1)]

Cost-to-go function

Qt(xt−1, ξt) := inf
xt∈Xt(xt−1,ξt)

ft(xt, ξt) +Qt+1(xt)



Formulations

General formulation

Consider xt := xt(ξ[t]), t = 1, . . . , T as functions of the stochastic process up
to stage t: ξ[t].

Definition
The mapping

xt : <d1 × · · · × <dt → <nt

is called an implementable policy.

An implementable policy is said to be feasible if

xt(ξ[t]) ∈ Xt(xt−1(ξ[t]), ξt), t = 2, 3, . . . , T w.p. 1.



Formulations

General formulation


inf E

[
f1(x1) + f2(x2(ξ[2]), ξ2) + · · ·+ fT (xT (ξ[T ]), ξT )

]
s.t x1 ∈ X1

xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T

I Function xt(ξ[t]) is measurable with respect to the σ-algebra Ft .

Unless the data process has finitely many scenarios, the above is an infinite
dimensional optimization problem.



Formulations

General formulation


inf E [f1(x1) + f2(x2(ξ2), ξ2) + · · ·+ fT (xT (ξT ), ξT )]
s.t x1 ∈ X1

xt(ξt) ∈ Xt(xt−1(ξt−1), ξt), t = 2, . . . , T
xt(ξt)C Ft, t = 1, . . . , T

I xt(ξt)C Ft means that the function xt(ξt) is measurable with respect
to the σ-algebra Ft.

Unless the data process has finitely many scenarios, the above is an infinite
dimensional optimization problem.



Optimality conditions

Assumptions

Feasible sets

I X1 := {x1 ∈ <n1 : A1x1 = b1}
I Xt(xt−1, ξt) := {xt ∈ <nt : Btxt−1 +Atxt = bt}

Functions

I ft : <nt ×<dt → <̄, t = 2, . . . , T , are random lower semicontinuous
functions (rlsc)

I ft(·, ξt) is convex for a.e. ξt, and t = 1, . . . , T

Definition. We say that f(x, ξ) is a rlsc function if the associated
epigraphical multifunction ξ → epi(f(x, ξ)) is closed and measurable.

I If there exist constraints of the type xt ≥ 0, we’ll assume that

ft(xt, ξt) =∞ if xt 6≥ 0 .



Optimality conditions

Assumptions

We implicitly assume that the data (At, Bt, bt) depends on the uncertainties

(At, Bt, bt) = (At(ξt), Bt(ξt), bt(ξt)), t = 1, . . . , T

We’ll focus on the dynamic programming formulation

Recourse function

Qt+1(xt, ξ[t]) := E|ξ[t]
[
Qt+1(xt, ξ[t+1])

]
Cost-to-go function

Qt(xt−1, ξ[t]) := inf
xt
{ft(xt, ξt) +Qt+1(xt, ξ[t]) : Btxt−1 +Atxt = bt}



Optimality conditions

Convexity

Lemma
Let ψt(xt, ξ[t]) := ft(xt, ξt) +Qt+1(xt, ξ[t]) be a convex function of xt. Then
the value function

v(y) := inf
xt
{ψt(xt, ξ[t]) : Atxt = y}

is convex.



Optimality conditions

Convexity

Lemma
Given the assumptions on ft, the problem

inf
x1
{f1(x1) +Q2(x1, ξ[1]) : A1x1 = b1}

is convex.



Optimality conditions

Optimality conditions

Additional assumption (F)

For all small perturbations of the vector bt, the corresponding optimal value

Qt(xt−1, ξ[t]) := inf
xt
{ft(xt, ξt) +Qt+1(xt, ξ[t]) : Btxt−1 +Atxt = bt}

is finite

Associated to the above problem we define the Lagrangian function

Lt(xt, πt) = ft(xt, ξt) +Qt+1(xt, ξ[t]) + π>t (bt −Btxt−1 −Atxt)

We denote the set of dual solution by

Dt(xt, ξ[t]) := arg sup
πt

inf
xt
Lt(xt, πt)



Optimality conditions

Optimality conditions

Propositon
Let ψt(xt, ξ[t]) := ft(xt, ξt) +Qt+1(xt, ξ[t]). If (F) holds, then

i) there is no duality gap:

Qt(xt−1, ξ[t]) = supπt infxt Lt(xt, πt)

= supπt
{
−ψ∗t (A>t πt, ξ[t]) + π>t (bt −Btxt−1)

}

ii) x̄t is a primal optimal solution iff there exists π̄t = π̄t(ξ[t]) such that
π̄t ∈ Dt(xt−1, ξ[t]) and 0 ∈ ∂xLt(x̄t, π̄t)

iii) The function Qt(xt−1, ξ[t]) is subdifferentiable at xt−1 and
∂xQt(xt−1, ξ[t]) = −B>t Dt(xt−1, ξ[t]).
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Optimality conditions

The optimality conditions of the dynamic equations can be written as

x̄t(ξ[t]) ∈ arg min
xt
{ft(xt, ξt) +Qt+1(xt, ξ[t]) : Atxt = bt −Btxt−1}

Since the objective function is convex and the constraints are linear, a
feasible policy is optimal iff it satisfies the following optimality conditions.

Optimality condition
For all t = 1, . . . , T and a.e. ξ[t] there exists π̄t(ξ[t]) such that the following
conditions holds:

0 ∈ ∂[ft(x̄t(ξ[t]), ξt) +Qt+1(x̄t(ξ[t]), ξ[t])]−A>t π̄t(ξ[t]) .

In order to obtain a more practical expression we will need the following
assumption.

Assumption (�)
For all t = 2, . . . , T and a.e. ξ[t] the function Qt(·, ξ[t−1]) is finite valued.



Optimality conditions

Optimality conditions

Propositon
Suppose that assumptions (F) and (�) are satisfied. A feasible policy
x̄t(ξ[t]) is optimal iff there exists mappings π̄t(ξ[t]), t = 1, . . . , T , such that
the condition

0 ∈ ∂ft(x̄t(ξ[t]), ξt)−A>t π̄t(ξ[t]) + E|ξ[t] [∂Qt+1(x̄t(ξ[t]), ξ[t+1])]

holds true for a.e. ξ[t] and t = 1, . . . , T .
Moreover, multipliers π̄t(ξ[t]) satisfies the above inclusion iff for a.e. ξ[t] it
holds that

π̄t(ξ[t]) ∈ Dt(x̄t−1(ξ[t−1]), ξ[t]) .



Optimality conditions

Optimality conditions

Theorem
Suppose that assumptions (F) and (�) are satisfied. A feasible policy
x̄t(ξ[t]) is optimal iff there exists measurable π̄t(ξ[t]), t = 1, . . . , T , such that

0 ∈ ∂ft(x̄t(ξ[t]), ξt)−A>t π̄t(ξ[t])− E|ξ[t] [B
>
t+1π̄t+1(ξ[t+1])

for a.e. ξ[t] and t = 1, . . . , T .



Optimality conditions

Optimality conditions

The previous theorem (and also the two previous propositions) hold true if
Assumptions (F) and (�) are replaced by the following one

Assumption (∗)
The functions ft(xt, ξt), t = 1, . . . , T , are random polyhedral and the
number of scenarios is finite.

Definition
Function g(x, ω) is called random polyhedral if g can be written as

g(x, ω) =

{
maxj∈J γ(ω) + qj(ω)>x if dk(ω)>x ≤ rk(ω) ∀ k ∈ K
∞ otherwise,

where J and K are finite index sets.
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