MULTISTAGE STOCHATIC PROGRAMMING PROBLEMS Optimality conditions

Welington de Oliveira

BAS Lecture 14, April 26, 2016, IMPA

NESTED FORMULATION

- $\xi = (\xi_1, \ldots, \xi_T)$ is the stochastic process
- $f_t: \Re^{n_t} \times \Re^{d_t} \to \overline{\Re}, t = 1, \dots, T$, are continuous functions
- $x_t \in \Re^{n_t}, t = 1, \ldots, T$, are the decision variables
- $\mathcal{X}_t: \Re^{n_{t-1}} \times \Re^{d_t} \rightrightarrows \Re^{n_t}, t = 1, \dots, T$, are measurable, closed valued multifunctions

NESTED FORMULATION

- $\xi = (\xi_1, \ldots, \xi_T)$ is the stochastic process
- $f_t: \Re^{n_t} \times \Re^{d_t} \to \overline{\Re}, t = 1, \dots, T$, are continuous functions
- $x_t \in \Re^{n_t}, t = 1, \ldots, T$, are the decision variables
- ► $\mathcal{X}_t : \Re^{n_{t-1}} \times \Re^{d_t} \rightrightarrows \Re^{n_t}, t = 1, \dots, T$, are measurable, closed valued multifunctions

$$\inf_{x_1 \in \mathcal{X}_1} f_1(x_1) + \mathbb{E}\left[\inf_{x_2 \in \mathcal{X}_2(x_1, \xi_2)} f_2(x_2, \xi_2) + \mathbb{E}\left[\cdots + \mathbb{E}\left[\inf_{x_T \in \mathcal{X}(x_{T-1}, \xi_T)} f_T(x_T, \xi_T)\right]\right]\right].$$

NESTED FORMULATION

- $\xi = (\xi_1, \ldots, \xi_T)$ is the stochastic process
- $f_t: \Re^{n_t} \times \Re^{d_t} \to \overline{\Re}, t = 1, \dots, T$, are continuous functions
- $x_t \in \Re^{n_t}, t = 1, \ldots, T$, are the decision variables
- ► $\mathcal{X}_t : \Re^{n_{t-1}} \times \Re^{d_t} \rightrightarrows \Re^{n_t}, t = 1, \dots, T$, are measurable, closed valued multifunctions

$$\inf_{x_1 \in \mathcal{X}_1} f_1(x_1) + \mathbb{E}_{|\xi_1|} \left[\inf_{x_2 \in \mathcal{X}_2(x_1,\xi_2)} f_2(x_2,\xi_2) + \mathbb{E}_{|\xi_{[2]}} \left[\dots + \mathbb{E}_{|\xi_{[T-1]}} [\inf_{x_T \in \mathcal{X}(x_{T-1},\xi_T)} f_T(x_T,\xi_T)] \right] \right].$$

DYNAMIC PROGRAMMING FORMULATION

• Stage
$$t = T$$

 $Q_T(x_{T-1}, \xi_{[T]}) := \inf_{x_T \in \mathcal{X}_T(x_{T-1}, \xi_T)} f_T(x_T, \xi_T)$
• At stages $t = 2, \dots, T - 1$
 $Q_t(x_{t-1}, \xi_{[t]}) := \inf_{x_t \in \mathcal{X}_t(x_{t-1}, \xi_t)} f_t(x_t, \xi_t) + \mathbb{E}_{|\xi_{[t]}} \left[Q_{t+1}(x_t, \xi_{[t+1]}) \right]$
• Stage $t = 1$
 $\inf_{x_1 \in \mathcal{X}_1} f_1(x_1) + \mathbb{E} \left[Q_2(x_1, \xi_2) \right]$

RECOURSE FUNCTION

$$Q_{t+1}(x_t, \xi_{[t]}) := \mathbb{E}_{|\xi_{[t]}} \left[Q_{t+1}(x_t, \xi_{[t+1]}) \right]$$

COST-TO-GO FUNCTION

$$Q_t(x_{t-1},\xi_{[t]}) := \inf_{x_t \in \mathcal{X}_t(x_{t-1},\xi_t)} f_t(x_t,\xi_t) + \mathcal{Q}_{t+1}(x_t,\xi_{[t]})$$

$$VAN 2016$$

DYNAMIC PROGRAMMING FORMULATION

If the stochastic process is stagewise independent the problem becomes less "heavy"

RECOURSE FUNCTION

$$\mathcal{Q}_{t+1}(x_t) := \mathbb{E}\left[Q_{t+1}(x_t, \xi_{t+1})\right]$$

COST-TO-GO FUNCTION

$$Q_t(x_{t-1},\xi_t) := \inf_{x_t \in \mathcal{X}_t(x_{t-1},\xi_t)} f_t(x_t,\xi_t) + \mathcal{Q}_{t+1}(x_t)$$

GENERAL FORMULATION

Consider $x_t := x_t(\xi_{[t]}), t = 1, ..., T$ as functions of the stochastic process up to stage t: $\xi_{[t]}$.

DEFINITION The mapping

$$x_t: \Re^{d_1} \times \cdots \times \Re^{d_t} \to \Re^{n_t}$$

is called an *implementable policy*.

An implementable policy is said to be feasible if

$$x_t(\xi_{[t]}) \in \mathcal{X}_t(x_{t-1}(\xi_{[t]}), \xi_t), \quad t = 2, 3, \dots, T \quad w.p. 1.$$

GENERAL FORMULATION

$$\begin{cases} \text{inf} \quad \mathbb{E}\left[f_1(x_1) + f_2(x_2(\xi_{[2]}), \xi_2) + \dots + f_T(x_T(\xi_{[T]}), \xi_T)\right] \\ \text{s.t} \quad x_1 \in \mathcal{X}_1 \\ \quad x_t(\xi_{[t]}) \in \mathcal{X}_t(x_{t-1}(\xi_{[t-1]}), \xi_t), \quad t = 2, \dots, T \end{cases}$$

• Function $x_t(\xi_{[t]})$ is measurable with respect to the σ -algebra \mathcal{F}_t .

Unless the data process has finitely many scenarios, the above is an infinite dimensional optimization problem.

GENERAL FORMULATION

$$\begin{cases} \inf & \mathbb{E}\left[f_{1}(x_{1}) + f_{2}(x_{2}(\xi_{2}), \xi_{2}) + \dots + f_{T}(x_{T}(\xi_{T}), \xi_{T})\right] \\ \text{s.t} & x_{1} \in \mathcal{X}_{1} \\ & x_{t}(\xi_{t}) \in \mathcal{X}_{t}(x_{t-1}(\xi_{t-1}), \xi_{t}), \quad t = 2, \dots, T \\ & x_{t}(\xi_{t}) \lhd \mathcal{F}_{t}, \qquad t = 1, \dots, T \end{cases}$$

• $x_t(\xi_t) \triangleleft \mathcal{F}_t$ means that the function $x_t(\xi_t)$ is measurable with respect to the σ -algebra \mathcal{F}_t .

Unless the data process has finitely many scenarios, the above is an infinite dimensional optimization problem.

✓ □ ト イ 問 ト イ 臣 ト イ 臣 ト イ 臣 ト イ 同 ト イ 同 ト イ 同 ト イ 臣 ト イ 臣 ト 王 つ へ へ

Assumptions

FEASIBLE SETS

- $X_1 := \{x_1 \in \Re^{n_1} : A_1 x_1 = b_1\}$
- $X_t(x_{t-1},\xi_t) := \{x_t \in \Re^{n_t} : B_t x_{t-1} + A_t x_t = b_t\}$

FUNCTIONS

- $f_t: \Re^{n_t} \times \Re^{d_t} \to \overline{\Re}, t = 2, \dots, T$, are random lower semicontinuous functions (rlsc)
- $f_t(\cdot, \xi_t)$ is convex for a.e. ξ_t , and $t = 1, \ldots, T$

<u>Definition</u>. We say that $f(x,\xi)$ is a rlsc function if the associated epigraphical multifunction $\xi \to epi(f(x,\xi))$ is closed and measurable.

• If there exist constraints of the type $x_t \ge 0$, we'll assume that

$$f_t(x_t,\xi_t) = \infty$$
 if $x_t \geq 0$.

Assumptions

We implicitly assume that the data (A_t, B_t, b_t) depends on the uncertainties

$$(A_t, B_t, b_t) = (A_t(\xi_t), B_t(\xi_t), b_t(\xi_t)), \quad t = 1, \dots, T$$

We'll focus on the dynamic programming formulation

RECOURSE FUNCTION

$$\mathcal{Q}_{t+1}(x_t,\xi_{[t]}) := \mathbb{E}_{|\xi_{[t]}} \left[Q_{t+1}(x_t,\xi_{[t+1]}) \right]$$

COST-TO-GO FUNCTION

$$Q_t(x_{t-1},\xi_{[t]}) := \inf_{x_t} \{ f_t(x_t,\xi_t) + Q_{t+1}(x_t,\xi_{[t]}) : B_t x_{t-1} + A_t x_t = b_t \}$$

Convexity

LEMMA

Let $\psi_t(x_t, \xi_{[t]}) := f_t(x_t, \xi_t) + Q_{t+1}(x_t, \xi_{[t]})$ be a convex function of x_t . Then the value function

$$v(y) := \inf_{x_t} \{ \psi_t(x_t, \xi_{[t]}) : A_t x_t = y \}$$

is convex.

LEMMA Given the assumptions on f_t , the problem

$$\inf_{x_1} \{ f_1(x_1) + \mathcal{Q}_2(x_1, \xi_{[1]}) : A_1 x_1 = b_1 \}$$

is convex.

Additional assumption (\bigstar)

For all small perturbations of the vector b_t , the corresponding optimal value

$$Q_t(x_{t-1},\xi_{[t]}) := \inf_{x_t} \{ f_t(x_t,\xi_t) + \mathcal{Q}_{t+1}(x_t,\xi_{[t]}) : B_t x_{t-1} + A_t x_t = b_t \}$$

is finite

Associated to the above problem we define the Lagrangian function

$$L_t(x_t, \pi_t) = f_t(x_t, \xi_t) + \mathcal{Q}_{t+1}(x_t, \xi_{[t]}) + \pi_t^\top (b_t - B_t x_{t-1} - A_t x_t)$$

We denote the set of dual solution by

$$\mathcal{D}_t(x_t, \xi_{[t]}) := \arg \sup_{\pi_t} \inf_{x_t} L_t(x_t, \pi_t)$$

VAN 2016 イロト イ団ト イミト イミト ミー のへで

PROPOSITON Let $\psi_t(x_t, \xi_{[t]}) := f_t(x_t, \xi_t) + \mathcal{Q}_{t+1}(x_t, \xi_{[t]})$. If (\bigstar) holds, then

I) there is no duality gap:

$$Q_t(x_{t-1},\xi_{[t]}) = \sup_{\pi_t} \inf_{x_t} L_t(x_t,\pi_t) = \sup_{\pi_t} \left\{ -\psi_t^*(A_t^{\top}\pi_t,\xi_{[t]}) + \pi_t^{\top}(b_t - B_t x_{t-1}) \right\}$$

PROPOSITON Let $\psi_t(x_t, \xi_{[t]}) := f_t(x_t, \xi_t) + \mathcal{Q}_{t+1}(x_t, \xi_{[t]})$. If (\bigstar) holds, then

I) there is no duality gap:

$$Q_t(x_{t-1},\xi_{[t]}) = \sup_{\pi_t} \inf_{x_t} L_t(x_t,\pi_t) = \sup_{\pi_t} \left\{ -\psi_t^*(A_t^{\top}\pi_t,\xi_{[t]}) + \pi_t^{\top}(b_t - B_t x_{t-1}) \right\}$$

- II) \bar{x}_t is a primal optimal solution iff there exists $\bar{\pi}_t = \bar{\pi}_t(\xi_{[t]})$ such that $\bar{\pi}_t \in \mathcal{D}_t(x_{t-1}, \xi_{[t]})$ and $0 \in \partial_x L_t(\bar{x}_t, \bar{\pi}_t)$
- III) The function $Q_t(x_{t-1}, \xi_{[t]})$ is subdifferentiable at x_{t-1} and $\partial_x Q_t(x_{t-1}, \xi_{[t]}) = -B_t^\top \mathcal{D}_t(x_{t-1}, \xi_{[t]}).$

The optimality conditions of the dynamic equations can be written as

$$\bar{x}_t(\xi_{[t]}) \in \arg\min_{x_t} \{ f_t(x_t, \xi_t) + \mathcal{Q}_{t+1}(x_t, \xi_{[t]}) : A_t x_t = b_t - B_t x_{t-1} \}$$

Since the objective function is convex and the constraints are linear, a feasible policy is optimal iff it satisfies the following optimality conditions.

OPTIMALITY CONDITION

For all t = 1, ..., T and a.e. $\xi_{[t]}$ there exists $\overline{\pi}_t(\xi_{[t]})$ such that the following conditions holds:

$$0 \in \partial [f_t(\bar{x}_t(\xi_{[t]}), \xi_t) + \mathcal{Q}_{t+1}(\bar{x}_t(\xi_{[t]}), \xi_{[t]})] - A_t^\top \bar{\pi}_t(\xi_{[t]}).$$

In order to obtain a more practical expression we will need the following assumption.

Assumption (\Box)

For all t = 2, ..., T and a.e. $\xi_{[t]}$ the function $Q_t(\cdot, \xi_{[t-1]})$ is finite valued.

Propositon

Suppose that assumptions (\bigstar) and (\Box) are satisfied. A feasible policy $\bar{x}_t(\xi_{[t]})$ is optimal iff there exists mappings $\bar{\pi}_t(\xi_{[t]})$, $t = 1, \ldots, T$, such that the condition

$$0 \in \partial f_t(\bar{x}_t(\xi_{[t]}), \xi_t) - A_t^\top \bar{\pi}_t(\xi_{[t]}) + \mathbb{E}_{|\xi_{[t]}}[\partial Q_{t+1}(\bar{x}_t(\xi_{[t]}), \xi_{[t+1]})]$$

holds true for a.e. $\xi_{[t]}$ and $t = 1, \ldots, T$.

Moreover, multipliers $\bar{\pi}_t(\xi_{[t]})$ satisfies the above inclusion iff for a.e. $\xi_{[t]}$ it holds that

$$\bar{\pi}_t(\xi_{[t]}) \in \mathcal{D}_t(\bar{x}_{t-1}(\xi_{[t-1]}), \xi_{[t]}).$$

Theorem

Suppose that assumptions (\bigstar) and (\Box) are satisfied. A feasible policy $\bar{x}_t(\xi_{[t]})$ is optimal iff there exists measurable $\bar{\pi}_t(\xi_{[t]})$, t = 1, ..., T, such that

$$0 \in \partial f_t(\bar{x}_t(\xi_{[t]}), \xi_t) - A_t^\top \bar{\pi}_t(\xi_{[t]}) - \mathbb{E}_{|\xi_{[t]}}[B_{t+1}^\top \bar{\pi}_{t+1}(\xi_{[t+1]})$$

for a.e. $\xi_{[t]}$ and t = 1, ..., T.

The previous theorem (and also the two previous propositions) hold true if Assumptions (\bigstar) and (\Box) are replaced by the following one

Assumption (*)

The functions $f_t(x_t, \xi_t)$, t = 1, ..., T, are random polyhedral and the number of scenarios is finite.

DEFINITION

Function $g(x, \omega)$ is called random polyhedral if g can be written as

$$g(x,\omega) = \begin{cases} \max_{j \in J} \gamma(\omega) + q_j(\omega)^\top x & \text{if} \\ \infty & \text{otherwise,} \end{cases} \quad d_k(\omega)^\top x \le r_k(\omega) \quad \forall \ k \in K$$

where J and K are finite index sets.