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FORMULATIONS

NESTED FORMULATION

v

&= (&,...,&r) is the stochastic process

> fii R xR SR t=1,...,T, are continuous functions

>z e R" t=1,...,T, are the decision variables

> X Rl x RUE Rt =1,..., T, are measurable, closed valued
multifunctions
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FORMULATIONS

NESTED FORMULATION

v

&= (&,...,&r) is the stochastic process

> fii R xR SR t=1,...,T, are continuous functions

>z e R" t=1,...,T, are the decision variables

> X Rl x RUE Rt =1,..., T, are measurable, closed valued
multifunctions

milenf)(1 f1(z1)+E ¢, fa(z2,€2) +]E‘5[2] . +]E‘5[T71][ fT(zT,gT)]H .

inf inf
wa€Xg(21,€2) zpeX(zp_1,41)

}VAN 2016



FORMULATIONS

DYNAMIC PROGRAMMING FORMULATION
> Staget =T

Qr(zr—1,§m) := fr(zr,€r)

1m
zr X (T —1,8T)

> At stagest=2,..., T —1

Qt(xt-1,&4) == fe(@e, &) + Epgy,y [Qera (e, Epeny)]

inf
zt €X¢ (2 —1,6t)

> Staget =1
inf fi(z1) + E[Qa(21, &)

x1EX

RECOURSE FUNCTION

Quv1(we, &) = Ejgy,y [Qerr (w4, Epesny)]

COST-TO-GO FUNCTION

Qi(re—1,¢p) == inf Je(we, &) + Qugr (e, €pay)

Tt €X¢ (z—1,6¢)
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FORMULATIONS

DYNAMIC PROGRAMMING FORMULATION

If the stochastic process is stagewise independent the problem becomes less
“heavy”

RECOURSE FUNCTION
Qit1(ze) = B [Quy1 (e, &e11)]
COST-TO-GO FUNCTION

Qi(w-1,&) = Je(ze, &) + Qeqr(ze)

inf
ot €X¢ (2 —1,6¢t)
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FORMULATIONS

GENERAL FORMULATION

Consider z; := x¢(§), t = 1,...,T as functions of the stochastic process up
to stage t: §[.

DEFINITION
The mapping
T R x xR 5 R

is called an implementable policy.

An implementable policy is said to be feasible if

ﬂct(ﬁ[t]) S Xt(mtfl(f[t]),&), t=2,3,...,T w.p. 1.
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FORMULATIONS

GENERAL FORMULATION

inf  E[fi(z1) + fa(z2(§p2)), &2) + - - - + fr(zr(§m), &r)]
st x1 €A

zi(€y) € Xe(we—1(§p-1)), &), t=2,...,T
» Function x;(£) is measurable with respect to the o-algebra F; .

Unless the data process has finitely many scenarios, the above is an infinite
dimensional optimization problem.
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FORMULATIONS

GENERAL FORMULATION

inf  E[fi(z1)+ fa(w2(82),&2) + - + fr(zr(&r), 1))
st z e

xe(&) € Xip(we-1(80-1),&), t=2,...,T
xt(gt)QJ:ta t:].,,T

> z4(&) < F; means that the function (&) is measurable with respect
to the o-algebra F;.

Unless the data process has finitely many scenarios, the above is an infinite
dimensional optimization problem.
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OPTIMALITY CONDITIONS

ASSUMPTIONS

FEASIBLE SETS
> Xii={z1 € R™ : A1z1 = b1}
> Xi(zi-1,&) = {2 € R™ : Biwe1 + Avwe = be}

FUNCTIONS

> fi iR xR SR t=2,...,T, are random lower semicontinuous
functions (rlsc)

> fi(-,&) is convex for a.e. &, and t=1,...,T

Definition. We say that f(z,£) is a rlsc function if the associated
epigraphical multifunction & — epi(f(x,€)) is closed and measurable.

> If there exist constraints of the type x: > 0, we’ll assume that

filze, &) =00 if @ 20.
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OPTIMALITY CONDITIONS

ASSUMPTIONS

We implicitly assume that the data (A¢, B¢, b:) depends on the uncertainties

(At7 Bt: bt) = (At(gt)y Bt(gt)7 bt(gt))7 = 17 ey T
We'll focus on the dynamic programming formulation

RECOURSE FUNCTION

Qur1(@e, &) = Ejey,y [Qear (@4, Epesny)]

COST-TO-GO FUNCTION

Qt(mt—hf[t]) = i;lf{ft(xt’&) + Qt+1($t,€[t]) i Bewi—1 + Ay = b}
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OPTIMALITY CONDITIONS

CONVEXITY

LEMMA
Let ¥i(mt, &y) = fe(xe, &) + Qi1 (e, &) be a convex function of x:. Then
the value function

v(y) == igf{wt(wt,s[t]) C Ay =y}

1S convex.
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OPTIMALITY CONDITIONS

CONVEXITY

LEMMA
Given the assumptions on fi, the problem

i;llf{fl(ﬂcl) + Qa(w1,€py) + A1z = b1}

1S convex.
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OPTIMALITY CONDITIONS

OPTIMALITY CONDITIONS

ADDITIONAL ASSUMPTION (%)
For all small perturbations of the vector b;, the corresponding optimal value

Qt(wt—l,f[t]) = inf{fe(z¢, &) + Qt+1($t,f[t]) i Bewi—1 + Ay = b}
T
is finite
Associated to the above problem we define the Lagrangian function
Li(ze,m) = fe(we, &) + Qt+1(xt7£[t]) + W:(bt — Bixi—1 — Arxy)
We denote the set of dual solution by

Di(we, &) = argsupinf Ly (z¢, mr)
Ty Tt
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OPTIMALITY CONDITIONS

OPTIMALITY CONDITIONS

PROPOSITON
Let wt(l‘hg[t]) = ft(xt,ft) + Qt+1($t7£[t]). If (*) holds, then

1) there is no duality gap:

Qe(zi-1,€) = sup,, infy, Li(ze, m)
=sup,, {—v; (Al 7, &) + 7 (b — Bewe 1)}
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OPTIMALITY CONDITIONS

OPTIMALITY CONDITIONS

PROPOSITON
Let wt(l‘hé[t]) = ft(xt,ft) + Qt+1($t7£[t]). If (*) holds, then

1) there is no duality gap:

Qe(zi-1,€) = sup,, infy, Li(ze, m)
=sup,, {—v; (Al 7, &) + 7 (b — Bewe 1)}

1) Z¢ is a primal optimal solution iff there exists my = 7i(§y) such that
T € Dt(xtfl,f[t]) and 0 € ath(ft,ﬁt)

1) The function Q¢(xi—1,&[) s subdifferentiable at x;—1 and
8th(‘Tt71>§[t]) = —B;Dt($t717€[t])‘
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OPTIMALITY CONDITIONS

OPTIMALITY CONDITIONS

The optimality conditions of the dynamic equations can be written as
i’t(g[t]) € arg min{ft(xt7§t) + Qt+1($t,€[t]) Ay = by — Btl‘tfl}
Tt
Since the objective function is convex and the constraints are linear, a
feasible policy is optimal iff it satisfies the following optimality conditions.

OPTIMALITY CONDITION
Forallt =1,...,T and a.e. § there exists 7;(§[;) such that the following
conditions holds:

0 € Ofe(@e(€x)), &) + Qe (Te(E)) €p)] — AL Te(Epn) -
In order to obtain a more practical expression we will need the following
assumption.

AssumpTION (O0)
For all t =2,...,T and a.e. & the function Q;(-,&[—q)) is finite valued.

Svan 2016



OPTIMALITY CONDITIONS

OPTIMALITY CONDITIONS

PROPOSITON

Suppose that assumptions (%) and (O) are satisfied. A feasible policy
Z(&y) is optimal iff there exists mappings 7¢(§y), t =1,...,T, such that
the condition

0 € Ofe(®e(&1)), &) — Ad 7o) + Eieyy [0Qu41 (B¢ (€11, € )]

holds true for a.e. {4y andt =1,...,T.
Moreover, multipliers T () satisfies the above inclusion iff for a.e. &y it
holds that

(&) € De(@e—1(&1-11), Ep)) -
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OPTIMALITY CONDITIONS

OPTIMALITY CONDITIONS

THEOREM

Suppose that assumptions (k) and (O) are satisfied. A feasible policy

Z¢(&y) is optimal iff there exists measurable w (&), t =1,...,T, such that
0 € fe(®u(€n), &) — Al 7e(€n) — Ejeyy [Bha Tt (§iern)

forae &y andt=1,...,T.
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OPTIMALITY CONDITIONS

OPTIMALITY CONDITIONS

The previous theorem (and also the two previous propositions) hold true if
Assumptions (%) and (O) are replaced by the following one

ASSUMPTION ()

The functions f¢(z¢,&:), t =1,...,T, are random polyhedral and the
number of scenarios is finite.

DEFINITION
Function g(z,w) is called random polyhedral if g can be written as

(,w) = maxjes y(w) + gj(w) Tz if dr(w) z <rp(w) VEEK
IW) =1 otherwise,

where J and K are finite index sets.
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