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T-SLP

min  E [ef @1 + ¢ 22(2) + - + cpar(€n)]
st. x1€X)
xf(é‘[t]) € Xt(xf—l(g[tfl])vgt)a t:277T

> X = {J}1 cRr™M IA1.'II1 = bl, T > 0}
> Xt(xt_l,ft) = {".Et €N : Bixy—1 + Ay = bt, Ty > O}

IMPLEMENTABLE POLICY

2t R xR 5 R

An implementable policy is said to be feasible if

xt(g[t]) € Xt(xt—l(g[tfl])vét)y t:2737"'7T w.p. 1.
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T-SLP

min E [cfazl +egwa(le) +--- 4+ c—TrmT(fT)]
st. x1 € X
mt(&)eXt(xt ( 1) ) t:2,...7T
xe (&) < Fu, t=1,...,T

> X = {xl eR™ Az = bl, T > 0}
> Xt(:vtfl,&) = {l’t c R : Bixy_1 + Arze = be, xr > O}

IMPLEMENTABLE POLICY

2ot R xR 5 R

x¢(€:) << F: means that the function x(&f)) is measurable with respect to

the o-algebra F;. }VAN 2016



EXAMPLE
Consider the following 3-SLP:

ming, E [Zf’:l &a:t]

s.t. (1’t,’l“t) (S %i
Tt —Tt—1 = T, t:2,3
T = 0,7"3 = 5
(xt7rt) < Fr

with 2 := {£',€2,£3,£}, and equiprobable scenarios ¢*, i =1,...,4
(pi =1/4)

or
e° ON
O
Oe

1 t,

Svan 2016



EXAMPLE

oL
e°°
“*
of

(1

The nonantecipativity constraints can be made explicit:

(c1z] + cowd + caxd) /4 + (12 + coxh + c523) /4 +
ming
(123 + 33 + cox3) /4 + (cr12] + caxh + crah) /4

s.t. (wt,rt)6%2,t—1 2,3andi=1,...,4
Tt_Tt 1—It,t—23andl—1 4
T1—07T3—57 i=1,...,4.
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T-SLP

min E [clTxl + c;xg(gg) 4+ 4 c;xT(fT)]
s.t. T € X
xt(ﬁt)eXt(mt 1( 1) ) tZQ,...,T
CIZ’t(&) < Fi, t=1,...,T

> Xy i={z1 € R™ : Aixz1 = by, 1 > 0}
> Xt(l’t—l,ft) = {l‘t S 8‘2”“ : Btwt—l =+ Atl‘t = bt, Tt Z 0}

EQUIVALENT FORMULATION

{min E[fi(z1) + fo(22(&2), & ) o+ fr(@r(ér),ér)]
s.t. mt(ft) < Ft, t= 1 T

with

Je(@e(&e), &) == { ciai(&) i @e(&) € Xi(@ema(§-1) &) Svan 2016

+o00 otherwise



FINITELY MANY SCENARIOS
{ min B [fi(z1) + f2(x2(&2), &) + -+ - + fr(zr(ér), )]
s.t. l‘t(gt)<]./—"t, t:L...,T

> Let’s assume that the stochastic process is represented by a scenario
tree composed of K scenarios £¥ with associate probability py.

» We use the shorthand fF(z¥) for ft(a;t(g{;]),gf)

min S0 pr [ (@) + f5 (@5) + - + R ()]
st af QF, t=1,....,T, k=1,...,K

Svan 2016



FINITELY MANY SCENARIOS

min Y0 e [ @) + fE(25) + - + [ ()]
st. xf < F, t=1,....,7, k=1,....K

USEFUL SPACES

» X be the vector space of all sequences (z¥,...,z%), k=1,..., K (such
space has dimension (n1 + ...+ nr)K)

> L be the subspace of X defined by the nonantecipativity constraints
(i.e., x € £ means that z is F- measurable)

» Inner product: (x,y)) := 25:1 Ethl pk<$f, yf)

COMPACT FORMULATION

min f(x) st. xeL

where f(x) := Zszl Pk 23:1 St ().
Svan 2016



OPTIMALITY CONDITIONS

F) = o Yy fE ()
k=1  t=1

min f(x) st. xeLl

THEOREM
A policy X € L is an optimal solution of the above problem iff there exists a
multiplier X € L such that

X € arg min L(x,)\), with L(x,)\):= f(x)+ () x)

x€E
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DUAL PROBLEM

K T
F) = pe > F ()
k=1 t=1

» Primal problem minkex f(x) st. x€ L
» Lagrangian function: L(x,\) := f(x) + (A, x))
» Dual function D(X\) = infzex L(x,\)

DUAL PROBLEM

max D(\)
Aect

THEOREM

The primal and optimal values are equal unless both problems are infeasible.
If their (common) optimal value is finite, then both problems have optimal
solutions.

}VAN 2016



DUAL PROBLEM

K T
F) = pe > F ()
k=1 t=1

» Primal problem minkex f(x) st. x€ L
» Lagrangian function: L(x,\) := f(x) + (A, x))
» Dual function D(X\) = infzex L(x,\)

DUAL PROBLEM

max D(\)
Aect

THEOREM

The primal and optimal values are equal unless both problems are infeasible.
If their (common) optimal value is finite, then both problems have optimal
solutions.

Proof: The result follows from the linear programming theory
(remember that f; are polyhedral!). }VAN 2016



DUAL PROBLEM

» Primal problem minxex f(x) st. x€ L
» Lagrangian function: L(x,\) := f(x) + (A, x))
» Dual function D(X) = infzex L(x, A)

DUAL PROBLEM

Ar[g%)i D(\) = I}\lél;{D(A) st By (A =0 t=1,....T
THEOREM

The primal and optimal values are equal unless both problems are infeasible.
If their (common) optimal value is finite, then both problems have optimal
solutions.

Proof: The result follows from the linear programming theory
(remember that f; are polyhedrall). }VAN 2016



DUAL DECOMPOSITION

1 2 2 3 3 4
_ $1—$1:O,$1—$1:O,$1—$1:0
o 1 {x;f@%:o and 25 —z5=0. }
e <1 Fi = Gx =0
1 -1
I —I
G= 1 —I ,
1 —I
1 -1

» [ is the identity matrix of appropriate dimensions }VAN 2016
» G is composed of K blocks G = [G'G* ... G¥]



DUAL DECOMPOSITION

e

,.4.,:1;172) AND X := (ml,zl:Q....,:rK)

N

2" = (1?7

b

K T
F) = iy fia)
k=1  t=1

The problem

migf(x) st. o <F, t=1...,T
x€

is thus equivalent to
min f(x) st. Gx=0

xeX
LAGRANGIAN

L(z,u) = f(x)+u'Gx

= 25:1 Pk Zthl It (acf) + 25:1 u' G

= 25:1 [pk Zthl ftk(w’f) + UTka]

}VAN 2016



DUuAL DECOMPOSITION
DUAL FUNCTION

K
. R
D(u) := igfgL x,u) ;D

where

D*(u) = infzfkaZzl fE(@f) +uT GFx
= —pesupgp{—(ru’ GM)x = S, ff(af)}
— (Y (- T GY)

where fk(xk) = 23:1 ft’“(xf)

» If Z* is a solution of the minimization problem, then G¥zZ* € dD* (u)
and thus

Gx € 9D(u) S
VAN 2016



DUAL DECOMPOSITION

D(u)

K T
. _ k k . ko k T Ak
= xuelf% L(z,u) = kil D"(u), D"(u):= 1:‘}fpk til fi(z)+u G'x

Given our assumptions on the T-SLP, the each subproblem is a LP!

minx Pk SE () Tak +uTGPx

.. Aixy =b
DF(u):={ *® 141 1
(u) Bf$t71+A§$t:bf7 t=2,....,T
x> 0.

Computing D(u) for each given u amounts to solving K LPs.
DUAL PROBLEM

K
max D(u) = max ZDk(u)
k=1

}VAN 2016



DUAL DECOMPOSITION ALGORITHM

» Step 0: initialization. Choose tol > 0, M > 0, u° € B(0, M) and call
the oracle to compute D(z°) and ¢° € D(u°). Set fo* = D(u°) and
=0

» Step 1: next iterate. Compute

quEarg max Dg(u)
2€B(0,M)

and let f;'® = D,(u*t).
» Step 2: stopping test. Define A, = f,;® — f;°. If A, < tol, stop

» Step 3: oracle call. Compute D(u‘™") and "' € D(u**!) and set
FI23 = max{ £, D(u ).

» Step 4: loop. Set £ =/¢+ 1 and go back to Step 1.

CUTTING-PLANE MODEL

D¢(u) := rjngi?{D(u") + (¢’ u—u)} Svan 2016



CONVERGENCE ANALYSIS

THEOREM
Let tol > 0 be given and suppose that M is large enough such that

B(0, M) Nargmax D(u) # 0.

Furthermore, assume that B(0, M) € domD. Then the Dual Decomposition
Algorithm determines Ay < tol in finitely many iterations. Furthermore,
the point @ yielding fi° = D(@) is a tol-solution to the problem.

Proof: The a algorithm is a mere cutting-plane applied to a convex and
polyhedral program. The result thus follows from the analysis of the
cutting-plane method.

Svan 2016



CONVERGENCE ANALYSIS

THEOREM
Let tol > 0 be given and suppose that M is large enough such that

B(0, M) Nargmax D(u) # 0.

Furthermore, assume that B(0, M) € domD. Then the Dual Decomposition
Algorithm determines Ay < tol in finitely many iterations. Furthermore,

low

the point 4 yielding f;°" = D(u) is a tol-solution to the problem.

Proof: The a algorithm is a mere cutting-plane applied to a convex and
polyhedral program. The result thus follows from the analysis of the
cutting-plane method.

But @ is a dual solution... We need a primal solution!
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PRIMAL RECOVERING

7 := min f(x) s.T. Gx=0
mig f(x) B

Consider tol = 0 in the algorithm. After finitely many steps the algorithm
finds a point @ such that

D(u) = max D(u) (= uerggicM) Dy(u))

Since there is no optimality gap,

v = D(u) (= max Di(u))

ueB(0,M)

PROPOSITON
Let ¢ the iteration counter in which the optimal solution u is found by the

algorithm. Suppose that 4 € intB(0, M). Let aj > 0 Lagrange multiplies
associate to the LP

max  De(u) = maxy,, T , A _
weBoan - s.t. r<DW)+{g,u—v), Vi<l (a;)

Then %X := Z§:1 a;x? is an optimal (primal) solution to the T-SLP. }VAN 2016



